Properties

Label 4.4.7168.1-32.1-b1
Base field 4.4.7168.1
Conductor norm \( 32 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.7168.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} + 7 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([7, 0, -6, 0, 1]))
 
gp: K = nfinit(Polrev([7, 0, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7, 0, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-3a-3\right){x}{y}={x}^{3}+\left(a^{3}-a^{2}-3a+2\right){x}^{2}+\left(13a^{3}-24a^{2}-21a+39\right){x}-79a^{3}+168a^{2}+125a-266\)
sage: E = EllipticCurve([K([-3,-3,1,1]),K([2,-3,-1,1]),K([0,0,0,0]),K([39,-21,-24,13]),K([-266,125,168,-79])])
 
gp: E = ellinit([Polrev([-3,-3,1,1]),Polrev([2,-3,-1,1]),Polrev([0,0,0,0]),Polrev([39,-21,-24,13]),Polrev([-266,125,168,-79])], K);
 
magma: E := EllipticCurve([K![-3,-3,1,1],K![2,-3,-1,1],K![0,0,0,0],K![39,-21,-24,13],K![-266,125,168,-79]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^2-2a-4)\) = \((a^2-a-2)^{5}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 32 \) = \(2^{5}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((8)\) = \((a^2-a-2)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4096 \) = \(2^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 43136 a^{2} - 68416 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{3} + 2 a^{2} + 2 a - 4 : a^{2} - 2 : 1\right)$
Height \(0.048120886805243357844181384246571592620\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{3} + \frac{3}{2} a^{2} + 2 a - \frac{7}{2} : 2 a^{2} - \frac{1}{2} a - \frac{7}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.048120886805243357844181384246571592620 \)
Period: \( 1092.5081306133141136952259452255813222 \)
Tamagawa product: \( 4 \)
Torsion order: \(2\)
Leading coefficient: \( 2.48381527145012 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-a-2)\) \(2\) \(4\) \(I_{3}^{*}\) Additive \(-1\) \(5\) \(12\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 32.1-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.