Properties

Label 4.4.6125.1-71.1-e1
Base field 4.4.6125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.6125.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 9 x^{2} + 9 x + 11 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([11, 9, -9, -1, 1]))
 
gp: K = nfinit(Polrev([11, 9, -9, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![11, 9, -9, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+2a^{2}-6a-7\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a^{3}-2a^{2}+6a+7\right){x}^{2}+\left(-2a^{3}-6a^{2}+15a+16\right){x}+2a^{3}-3a^{2}-4a\)
sage: E = EllipticCurve([K([-7,-6,2,1]),K([7,6,-2,-1]),K([1,1,0,0]),K([16,15,-6,-2]),K([0,-4,-3,2])])
 
gp: E = ellinit([Polrev([-7,-6,2,1]),Polrev([7,6,-2,-1]),Polrev([1,1,0,0]),Polrev([16,15,-6,-2]),Polrev([0,-4,-3,2])], K);
 
magma: E := EllipticCurve([K![-7,-6,2,1],K![7,6,-2,-1],K![1,1,0,0],K![16,15,-6,-2],K![0,-4,-3,2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^3-2a^2+14a+5)\) = \((-2a^3-2a^2+14a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((21a^3+20a^2-118a-78)\) = \((-2a^3-2a^2+14a+5)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 357911 \) = \(71^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{40567729198}{357911} a^{3} - \frac{18573487223}{357911} a^{2} - \frac{289892232122}{357911} a + \frac{246977548593}{357911} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{3} + a^{2} + 3 a : 6 a^{2} - 9 a - 11 : 1\right)$
Height \(0.012087042536891051962558966425690842916\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.012087042536891051962558966425690842916 \)
Period: \( 1375.4792214357158959221372569506678997 \)
Tamagawa product: \( 3 \)
Torsion order: \(1\)
Leading coefficient: \( 2.54919045785147 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^3-2a^2+14a+5)\) \(71\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 71.1-e consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.