Properties

Label 4.4.5744.1-4.1-b1
Base field 4.4.5744.1
Conductor norm \( 4 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.5744.1

Generator \(a\), with minimal polynomial \( x^{4} - 5 x^{2} - 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -2, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, -2, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{3}-5a-1\right){y}={x}^{3}+\left(a^{2}-2a-1\right){x}^{2}+\left(2a^{2}-a-1\right){x}-a^{3}+4a^{2}-4\)
sage: E = EllipticCurve([K([-1,0,1,0]),K([-1,-2,1,0]),K([-1,-5,0,1]),K([-1,-1,2,0]),K([-4,0,4,-1])])
 
gp: E = ellinit([Polrev([-1,0,1,0]),Polrev([-1,-2,1,0]),Polrev([-1,-5,0,1]),Polrev([-1,-1,2,0]),Polrev([-4,0,4,-1])], K);
 
magma: E := EllipticCurve([K![-1,0,1,0],K![-1,-2,1,0],K![-1,-5,0,1],K![-1,-1,2,0],K![-4,0,4,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2+a-1)\) = \((a^2+a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4 \) = \(4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a^3-16a-12)\) = \((a^2+a-1)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1024 \) = \(-4^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{7891043}{8} a^{3} + \frac{2963693}{4} a^{2} + 4376076 a - \frac{10508429}{8} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-4 a^{3} + 5 a^{2} + 9 a + 2 : 19 a^{3} - 42 a^{2} - 14 a + 20 : 1\right)$
Height \(0.0047378567657410977801417911757320960148\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0047378567657410977801417911757320960148 \)
Period: \( 1067.8926312459185338156725230437965665 \)
Tamagawa product: \( 5 \)
Torsion order: \(1\)
Leading coefficient: \( 1.33515687653143 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2+a-1)\) \(4\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.4.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 4.1-b consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.