Properties

Label 4.4.4525.1-45.4-c2
Base field 4.4.4525.1
Conductor norm \( 45 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.4525.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 7 x^{2} + 3 x + 9 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([9, 3, -7, -1, 1]))
 
gp: K = nfinit(Polrev([9, 3, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, 3, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-3\right){x}{y}+a{y}={x}^{3}+\left(\frac{1}{3}a^{3}-\frac{4}{3}a^{2}-\frac{1}{3}a+3\right){x}^{2}+\left(\frac{10}{3}a^{3}+\frac{8}{3}a^{2}-\frac{73}{3}a-24\right){x}-8a^{3}-6a^{2}+53a+60\)
sage: E = EllipticCurve([K([-3,0,1,0]),K([3,-1/3,-4/3,1/3]),K([0,1,0,0]),K([-24,-73/3,8/3,10/3]),K([60,53,-6,-8])])
 
gp: E = ellinit([Polrev([-3,0,1,0]),Polrev([3,-1/3,-4/3,1/3]),Polrev([0,1,0,0]),Polrev([-24,-73/3,8/3,10/3]),Polrev([60,53,-6,-8])], K);
 
magma: E := EllipticCurve([K![-3,0,1,0],K![3,-1/3,-4/3,1/3],K![0,1,0,0],K![-24,-73/3,8/3,10/3],K![60,53,-6,-8]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/3a^3+5/3a^2-4/3a-4)\) = \((-a^2+a+5)\cdot(1/3a^3-1/3a^2-7/3a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 45 \) = \(5\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1/3a^3+1/3a^2-2/3a-1)\) = \((-a^2+a+5)\cdot(1/3a^3-1/3a^2-7/3a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 45 \) = \(5\cdot9\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1037039198606}{15} a^{3} - 118962068606 a^{2} + \frac{2404382003012}{15} a + \frac{1143498460323}{5} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{1}{3} a^{3} + \frac{2}{3} a^{2} - \frac{10}{3} a - 3 : \frac{7}{3} a^{3} - \frac{4}{3} a^{2} - \frac{37}{3} a - 4 : 1\right)$
Height \(0.021028658745267958607663639649332958194\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.021028658745267958607663639649332958194 \)
Period: \( 1579.5321674845683160232659827920998355 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 1.97510754342395 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2+a+5)\) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((1/3a^3-1/3a^2-7/3a+1)\) \(9\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 45.4-c consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.