Properties

Label 4.4.4525.1-45.3-c1
Base field 4.4.4525.1
Conductor norm \( 45 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.4525.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 7 x^{2} + 3 x + 9 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([9, 3, -7, -1, 1]))
 
gp: K = nfinit(Polrev([9, 3, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, 3, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{3}a^{3}+\frac{2}{3}a^{2}-\frac{7}{3}a-4\right){x}{y}+\left(\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{4}{3}a+1\right){y}={x}^{3}+\left(\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a-1\right){x}^{2}+\left(\frac{7}{3}a^{3}-\frac{22}{3}a^{2}+\frac{2}{3}a+14\right){x}-6a^{3}+18a^{2}+6a-24\)
sage: E = EllipticCurve([K([-4,-7/3,2/3,1/3]),K([-1,-1/3,-1/3,1/3]),K([1,-4/3,-1/3,1/3]),K([14,2/3,-22/3,7/3]),K([-24,6,18,-6])])
 
gp: E = ellinit([Polrev([-4,-7/3,2/3,1/3]),Polrev([-1,-1/3,-1/3,1/3]),Polrev([1,-4/3,-1/3,1/3]),Polrev([14,2/3,-22/3,7/3]),Polrev([-24,6,18,-6])], K);
 
magma: E := EllipticCurve([K![-4,-7/3,2/3,1/3],K![-1,-1/3,-1/3,1/3],K![1,-4/3,-1/3,1/3],K![14,2/3,-22/3,7/3],K![-24,6,18,-6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+6)\) = \((-a^2+a+5)\cdot(-a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 45 \) = \(5\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-9a^3-25a^2+57a+117)\) = \((-a^2+a+5)^{6}\cdot(-a)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 11390625 \) = \(5^{6}\cdot9^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{3312830917}{10125} a^{3} - \frac{6961599439}{10125} a^{2} - \frac{15512081743}{10125} a + \frac{3003746024}{1125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{3} a^{3} + \frac{4}{3} a^{2} - \frac{2}{3} a - 2 : \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{4}{3} a - 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 132.65897158337028414813623977350178111 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 0.986046370250883 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2+a+5)\) \(5\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((-a)\) \(9\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 45.3-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.