Properties

Label 4.4.4400.1-31.2-e1
Base field 4.4.4400.1
Conductor norm \( 31 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.4400.1

Generator \(a\), with minimal polynomial \( x^{4} - 7 x^{2} + 11 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([11, 0, -7, 0, 1]))
 
gp: K = nfinit(Polrev([11, 0, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![11, 0, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-3a-3\right){x}{y}+{y}={x}^{3}+\left(-a^{3}-a^{2}+4a+5\right){x}^{2}+\left(29a^{3}-62a^{2}-67a+150\right){x}+242a^{3}-518a^{2}-576a+1234\)
sage: E = EllipticCurve([K([-3,-3,1,1]),K([5,4,-1,-1]),K([1,0,0,0]),K([150,-67,-62,29]),K([1234,-576,-518,242])])
 
gp: E = ellinit([Polrev([-3,-3,1,1]),Polrev([5,4,-1,-1]),Polrev([1,0,0,0]),Polrev([150,-67,-62,29]),Polrev([1234,-576,-518,242])], K);
 
magma: E := EllipticCurve([K![-3,-3,1,1],K![5,4,-1,-1],K![1,0,0,0],K![150,-67,-62,29],K![1234,-576,-518,242]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3+a^2-4a-2)\) = \((a^3+a^2-4a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 31 \) = \(31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^3+a^2-4a-2)\) = \((a^3+a^2-4a-2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 31 \) = \(31\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{206255355828299}{31} a^{3} - \frac{318326661270219}{31} a^{2} + \frac{952494243687014}{31} a + \frac{1470043341319301}{31} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-3 a^{3} + 6 a^{2} + 6 a - 13 : -19 a^{3} + 43 a^{2} + 47 a - 106 : 1\right)$
Height \(0.19537674494315354405958677190467612575\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.19537674494315354405958677190467612575 \)
Period: \( 161.80867155882506084206707737608454159 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.90637491733585 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+a^2-4a-2)\) \(31\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 31.2-e consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.