Properties

Label 4.4.4225.1-9.1-a4
Base field \(\Q(\sqrt{5}, \sqrt{13})\)
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{5}, \sqrt{13})\)

Generator \(a\), with minimal polynomial \( x^{4} - 9 x^{2} + 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([4, 0, -9, 0, 1]))
 
gp: K = nfinit(Polrev([4, 0, -9, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 0, -9, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{2}+\frac{1}{2}a-2\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(\frac{1}{4}a^{3}-\frac{7}{4}a-\frac{3}{2}\right){x}\)
sage: E = EllipticCurve([K([-2,1/2,1/2,0]),K([-1,-1,0,0]),K([0,0,0,0]),K([-3/2,-7/4,0,1/4]),K([0,0,0,0])])
 
gp: E = ellinit([Polrev([-2,1/2,1/2,0]),Polrev([-1,-1,0,0]),Polrev([0,0,0,0]),Polrev([-3/2,-7/4,0,1/4]),Polrev([0,0,0,0])], K);
 
magma: E := EllipticCurve([K![-2,1/2,1/2,0],K![-1,-1,0,0],K![0,0,0,0],K![-3/2,-7/4,0,1/4],K![0,0,0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/4a^3-11/4a-1/2)\) = \((1/4a^3-11/4a-1/2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5/4a^3-55/4a+163/2)\) = \((1/4a^3-11/4a-1/2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 43046721 \) = \(9^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{3793055}{26244} a^{3} - \frac{41723605}{26244} a + \frac{46302551}{13122} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(0 : 0 : 1\right)$ $\left(\frac{1}{4} a^{2} - \frac{5}{4} : -\frac{1}{16} a^{3} + \frac{5}{16} a - 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 730.31224008123245248418934868981778198 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 1.40444661554083 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/4a^3-11/4a-1/2)\) \(9\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 9.1-a consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.