Properties

Label 4.4.4225.1-16.3-a2
Base field \(\Q(\sqrt{5}, \sqrt{13})\)
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{5}, \sqrt{13})\)

Generator \(a\), with minimal polynomial \( x^{4} - 9 x^{2} + 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([4, 0, -9, 0, 1]))
 
gp: K = nfinit(Polrev([4, 0, -9, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 0, -9, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{2}-\frac{1}{2}a-1\right){x}{y}+\left(\frac{1}{2}a^{2}+\frac{1}{2}a-1\right){y}={x}^{3}+\left(-\frac{1}{4}a^{3}+\frac{1}{2}a^{2}+\frac{5}{4}a-\frac{3}{2}\right){x}^{2}+\left(-\frac{3}{4}a^{3}+\frac{3}{2}a^{2}-\frac{5}{4}a-\frac{1}{2}\right){x}-\frac{5}{4}a^{3}+2a^{2}+\frac{3}{4}a-\frac{3}{2}\)
sage: E = EllipticCurve([K([-1,-1/2,1/2,0]),K([-3/2,5/4,1/2,-1/4]),K([-1,1/2,1/2,0]),K([-1/2,-5/4,3/2,-3/4]),K([-3/2,3/4,2,-5/4])])
 
gp: E = ellinit([Polrev([-1,-1/2,1/2,0]),Polrev([-3/2,5/4,1/2,-1/4]),Polrev([-1,1/2,1/2,0]),Polrev([-1/2,-5/4,3/2,-3/4]),Polrev([-3/2,3/4,2,-5/4])], K);
 
magma: E := EllipticCurve([K![-1,-1/2,1/2,0],K![-3/2,5/4,1/2,-1/4],K![-1,1/2,1/2,0],K![-1/2,-5/4,3/2,-3/4],K![-3/2,3/4,2,-5/4]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a+2)\) = \((1/2a^3-9/2a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(4^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^2-12)\) = \((1/2a^3-9/2a+1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 65536 \) = \(4^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{25403}{2} a^{3} + \frac{75735}{2} a^{2} - 6622 a - 17798 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{2} a^{2} + \frac{1}{2} a + 1 : -\frac{1}{4} a^{3} + \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{1}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 300.49714881064976582572323386337040302 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.15575826465634 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3-9/2a+1)\) \(4\) \(1\) \(IV^{*}\) Additive \(1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 16.3-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.