Properties

Label 4.4.4205.1-35.1-b2
Base field 4.4.4205.1
Conductor norm \( 35 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.4205.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{3}+2a^{2}+3a\right){x}{y}+\left(-a^{3}+2a^{2}+4a-1\right){y}={x}^{3}+\left(2a^{3}-3a^{2}-7a+1\right){x}^{2}+\left(-2a^{3}+3a^{2}+9a-3\right){x}+3a^{3}-5a^{2}-12a+4\)
sage: E = EllipticCurve([K([0,3,2,-1]),K([1,-7,-3,2]),K([-1,4,2,-1]),K([-3,9,3,-2]),K([4,-12,-5,3])])
 
gp: E = ellinit([Polrev([0,3,2,-1]),Polrev([1,-7,-3,2]),Polrev([-1,4,2,-1]),Polrev([-3,9,3,-2]),Polrev([4,-12,-5,3])], K);
 
magma: E := EllipticCurve([K![0,3,2,-1],K![1,-7,-3,2],K![-1,4,2,-1],K![-3,9,3,-2],K![4,-12,-5,3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-3a^2-a+3)\) = \((a^3-a^2-5a)\cdot(a^2-2a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 35 \) = \(5\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^3-8a-3)\) = \((a^3-a^2-5a)^{2}\cdot(a^2-2a-3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -175 \) = \(-5^{2}\cdot7\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{324614}{35} a^{3} + \frac{777407}{35} a^{2} + \frac{371417}{35} a - \frac{212344}{35} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{3} + 6 a + 5 : -a^{3} - a^{2} + 7 a + 10 : 1\right)$
Height \(0.21337390952776005525302766484456271456\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a^{3} + 3 a^{2} + 8 a - 2 : -1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.21337390952776005525302766484456271456 \)
Period: \( 319.13547734805841205893553406633278640 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 2.10021326092434 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-5a)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a^2-2a-3)\) \(7\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 35.1-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.