Properties

Label 4.4.2777.1-704.3-r4
Base field 4.4.2777.1
Conductor norm \( 704 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, 1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-3a\right){x}{y}={x}^{3}+\left(a^{3}-a^{2}-4a\right){x}^{2}+\left(49a^{3}-192a^{2}+101a+161\right){x}-755a^{3}+1819a^{2}+217a-919\)
sage: E = EllipticCurve([K([0,-3,0,1]),K([0,-4,-1,1]),K([0,0,0,0]),K([161,101,-192,49]),K([-919,217,1819,-755])])
 
gp: E = ellinit([Polrev([0,-3,0,1]),Polrev([0,-4,-1,1]),Polrev([0,0,0,0]),Polrev([161,101,-192,49]),Polrev([-919,217,1819,-755])], K);
 
magma: E := EllipticCurve([K![0,-3,0,1],K![0,-4,-1,1],K![0,0,0,0],K![161,101,-192,49],K![-919,217,1819,-755]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+5a^2-a-6)\) = \((-a)^{6}\cdot(-a^3+2a^2+2a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 704 \) = \(2^{6}\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((32a^3-25a^2-115a+38)\) = \((-a)^{20}\cdot(-a^3+2a^2+2a-1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 11534336 \) = \(2^{20}\cdot11\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{85048962626261637}{44} a^{3} + \frac{115966996128885001}{44} a^{2} - \frac{33248386401040127}{22} a - \frac{72060916678769347}{44} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{7}{2} a^{3} + \frac{13}{2} a^{2} + \frac{17}{4} a - \frac{13}{2} : \frac{27}{8} a^{3} - \frac{25}{8} a^{2} - \frac{39}{8} a + \frac{15}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 32.344159763435771309099027528851189699 \)
Tamagawa product: \( 4 \)  =  \(2^{2}\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 2.45509286962894 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(2\) \(4\) \(I_{10}^{*}\) Additive \(1\) \(6\) \(20\) \(2\)
\((-a^3+2a^2+2a-1)\) \(11\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 704.3-r consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.