Properties

Label 4.4.2777.1-704.3-c1
Base field 4.4.2777.1
Conductor norm \( 704 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, 1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-2\right){x}{y}+a{y}={x}^{3}+\left(a^{3}-a^{2}-2a+2\right){x}^{2}+\left(-194a^{3}+289a^{2}+608a-483\right){x}-2299a^{3}+3793a^{2}+6694a-6668\)
sage: E = EllipticCurve([K([-2,0,1,0]),K([2,-2,-1,1]),K([0,1,0,0]),K([-483,608,289,-194]),K([-6668,6694,3793,-2299])])
 
gp: E = ellinit([Polrev([-2,0,1,0]),Polrev([2,-2,-1,1]),Polrev([0,1,0,0]),Polrev([-483,608,289,-194]),Polrev([-6668,6694,3793,-2299])], K);
 
magma: E := EllipticCurve([K![-2,0,1,0],K![2,-2,-1,1],K![0,1,0,0],K![-483,608,289,-194],K![-6668,6694,3793,-2299]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+5a^2-a-6)\) = \((-a)^{6}\cdot(-a^3+2a^2+2a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 704 \) = \(2^{6}\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((32a^3-25a^2-115a+38)\) = \((-a)^{20}\cdot(-a^3+2a^2+2a-1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 11534336 \) = \(2^{20}\cdot11\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{85048962626261637}{44} a^{3} + \frac{115966996128885001}{44} a^{2} - \frac{33248386401040127}{22} a - \frac{72060916678769347}{44} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-3 a^{3} + 11 a^{2} - 16 a + 15 : -67 a^{3} + 170 a^{2} - 19 a - 20 : 1\right)$
Height \(1.3165648068116551309801836066717887095\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{35}{4} a^{3} - 15 a^{2} - \frac{95}{4} a + \frac{47}{2} : \frac{25}{4} a^{3} - \frac{79}{8} a^{2} - \frac{149}{8} a + \frac{69}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.3165648068116551309801836066717887095 \)
Period: \( 14.768384541850952056003046302195413685 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 2.95173442908078 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(2\) \(2\) \(I_{10}^{*}\) Additive \(-1\) \(6\) \(20\) \(2\)
\((-a^3+2a^2+2a-1)\) \(11\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 704.3-c consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.