Properties

Base field 4.4.2777.1
Label 4.4.2777.1-22.1-b1
Conductor \((22,2 a^{3} - 3 a^{2} - 5 a + 4)\)
Conductor norm \( 22 \)
CM no
base-change no
Q-curve not determined
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^4 - x^3 - 4*x^2 + x + 2)
gp (2.8): K = nfinit(a^4 - a^3 - 4*a^2 + a + 2);

Weierstrass equation

\( y^2 + \left(a^{3} - 4 a - 1\right) x y + \left(a^{2} - 2\right) y = x^{3} + \left(-a^{3} + 2 a^{2} + 3 a - 4\right) x^{2} + \left(574 a^{3} - 1057 a^{2} - 549 a - 385\right) x + 14427 a^{3} - 29786 a^{2} - 11937 a + 4219 \)
magma: E := ChangeRing(EllipticCurve([a^3 - 4*a - 1, -a^3 + 2*a^2 + 3*a - 4, a^2 - 2, 574*a^3 - 1057*a^2 - 549*a - 385, 14427*a^3 - 29786*a^2 - 11937*a + 4219]),K);
sage: E = EllipticCurve(K, [a^3 - 4*a - 1, -a^3 + 2*a^2 + 3*a - 4, a^2 - 2, 574*a^3 - 1057*a^2 - 549*a - 385, 14427*a^3 - 29786*a^2 - 11937*a + 4219])
gp (2.8): E = ellinit([a^3 - 4*a - 1, -a^3 + 2*a^2 + 3*a - 4, a^2 - 2, 574*a^3 - 1057*a^2 - 549*a - 385, 14427*a^3 - 29786*a^2 - 11937*a + 4219],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((22,2 a^{3} - 3 a^{2} - 5 a + 4)\) = \( \left(-a\right) \cdot \left(-a^{3} + 2 a^{2} + 2 a - 1\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 22 \) = \( 2 \cdot 11 \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((1345499989865120018402,a + 263896146678376282538,a^{3} - a^{2} - 3 a + 295987726286503011368,a^{2} - a + 850667416657548635686)\) = \( \left(-a\right) \cdot \left(-a^{3} + 2 a^{2} + 2 a - 1\right)^{20} \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 1345499989865120018402 \) = \( 2 \cdot 11^{20} \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( \frac{1573390889429092537195325472495367149}{1345499989865120018402} a^{3} - \frac{2642735286096795180305969741051658561}{1345499989865120018402} a^{2} - \frac{2248723264231462392984836360638223253}{672749994932560009201} a + \frac{4630049775522972966851131993588823229}{1345499989865120018402} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil rank and generators

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
Generator: $\left(-\frac{41}{2} a^{3} + \frac{127}{4} a^{2} + \frac{171}{4} a - \frac{23}{4} : -\frac{29}{8} a^{3} - 22 a^{2} + \frac{385}{8} a + \frac{417}{8} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a\right) \) 2 \(1\) \( I_{1} \) Split multiplicative 1 1 1
\( \left(-a^{3} + 2 a^{2} + 2 a - 1\right) \) 11 \(20\) \( I_{20} \) Split multiplicative 1 20 20

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 5, 10 and 20.
Its isogeny class 22.1-b consists of curves linked by isogenies of degrees dividing 20.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It has not yet been determined whether or not it is a \(\Q\)-curve.