Properties

Base field 4.4.2777.1
Label 4.4.2777.1-22.1-a8
Conductor \((22,2 a^{3} - 3 a^{2} - 5 a + 4)\)
Conductor norm \( 22 \)
CM no
base-change no
Q-curve no
Torsion order \( 4 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^4 - x^3 - 4*x^2 + x + 2)
gp (2.8): K = nfinit(a^4 - a^3 - 4*a^2 + a + 2);

Weierstrass equation

\( y^2 + \left(a^{2} - 1\right) x y + \left(a^{3} - 4 a - 1\right) y = x^{3} + \left(-65 a^{3} + 111 a^{2} + 209 a - 254\right) x - 552 a^{3} + 882 a^{2} + 1709 a - 1680 \)
magma: E := ChangeRing(EllipticCurve([a^2 - 1, 0, a^3 - 4*a - 1, -65*a^3 + 111*a^2 + 209*a - 254, -552*a^3 + 882*a^2 + 1709*a - 1680]),K);
sage: E = EllipticCurve(K, [a^2 - 1, 0, a^3 - 4*a - 1, -65*a^3 + 111*a^2 + 209*a - 254, -552*a^3 + 882*a^2 + 1709*a - 1680])
gp (2.8): E = ellinit([a^2 - 1, 0, a^3 - 4*a - 1, -65*a^3 + 111*a^2 + 209*a - 254, -552*a^3 + 882*a^2 + 1709*a - 1680],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((22,2 a^{3} - 3 a^{2} - 5 a + 4)\) = \( \left(-a\right) \cdot \left(-a^{3} + 2 a^{2} + 2 a - 1\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 22 \) = \( 2 \cdot 11 \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((7256313856,a + 2932222442,a^{3} - a^{2} - 3 a + 634432142,a^{2} - a + 4451314738)\) = \( \left(-a\right)^{12} \cdot \left(-a^{3} + 2 a^{2} + 2 a - 1\right)^{6} \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 7256313856 \) = \( 2^{12} \cdot 11^{6} \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( -\frac{20157112611959390547}{7256313856} a^{3} + \frac{50708561159662371377}{7256313856} a^{2} + \frac{1953876284050968001}{3628156928} a - \frac{26455281535659018279}{7256313856} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: \(\Z/2\Z\times\Z/2\Z\)
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
Generators: $\left(6 a^{3} - \frac{45}{4} a^{2} - \frac{61}{4} a + \frac{35}{2} : \frac{3}{4} a^{3} - \frac{7}{8} a^{2} - \frac{9}{4} a + 4 : 1\right)$,$\left(-3 a^{3} + 8 a^{2} + 3 a - 13 : -a^{2} + 3 a - 1 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a\right) \) \(2\) \(2\) \(I_{12}\) Non-split multiplicative \(1\) \(1\) \(12\) \(12\)
\( \left(-a^{3} + 2 a^{2} + 2 a - 1\right) \) \(11\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 22.1-a consists of curves linked by isogenies of degrees dividing 24.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.