Properties

Base field 4.4.2777.1
Label 4.4.2777.1-22.1-a4
Conductor \((22,2 a^{3} - 3 a^{2} - 5 a + 4)\)
Conductor norm \( 22 \)
CM no
base-change no
Q-curve not determined
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^4 - x^3 - 4*x^2 + x + 2)
gp (2.8): K = nfinit(a^4 - a^3 - 4*a^2 + a + 2);

Weierstrass equation

\( y^2 + \left(a^{2} - a - 1\right) x y + \left(a^{2} - a - 2\right) y = x^{3} + \left(-a^{3} + 2 a^{2} + 3 a - 3\right) x^{2} + \left(255 a^{3} - 345 a^{2} - 799 a + 451\right) x - 6627 a^{3} + 11701 a^{2} + 18463 a - 21549 \)
magma: E := ChangeRing(EllipticCurve([a^2 - a - 1, -a^3 + 2*a^2 + 3*a - 3, a^2 - a - 2, 255*a^3 - 345*a^2 - 799*a + 451, -6627*a^3 + 11701*a^2 + 18463*a - 21549]),K);
sage: E = EllipticCurve(K, [a^2 - a - 1, -a^3 + 2*a^2 + 3*a - 3, a^2 - a - 2, 255*a^3 - 345*a^2 - 799*a + 451, -6627*a^3 + 11701*a^2 + 18463*a - 21549])
gp (2.8): E = ellinit([a^2 - a - 1, -a^3 + 2*a^2 + 3*a - 3, a^2 - a - 2, 255*a^3 - 345*a^2 - 799*a + 451, -6627*a^3 + 11701*a^2 + 18463*a - 21549],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((22,2 a^{3} - 3 a^{2} - 5 a + 4)\) = \( \left(-a\right) \cdot \left(-a^{3} + 2 a^{2} + 2 a - 1\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 22 \) = \( 2 \cdot 11 \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((498650091216506454016,a + 27113481994941856234,a^{3} - a^{2} - 3 a + 97555284558803004046,a^{2} - a + 233462222614485761074)\) = \( \left(-a\right)^{48} \cdot \left(-a^{3} + 2 a^{2} + 2 a - 1\right)^{6} \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 498650091216506454016 \) = \( 2^{48} \cdot 11^{6} \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( -\frac{1502268147076192175039019336779}{498650091216506454016} a^{3} + \frac{261719896030458847171340772313}{498650091216506454016} a^{2} + \frac{3112599543413066339294706687465}{249325045608253227008} a + \frac{3638403917729845697875388025793}{498650091216506454016} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil rank and generators

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
Generator: $\left(\frac{15}{2} a^{3} - \frac{19}{2} a^{2} - \frac{99}{4} a + \frac{25}{2} : \frac{9}{8} a^{3} - \frac{9}{8} a^{2} - \frac{23}{8} a - \frac{9}{4} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a\right) \) 2 \(2\) \( I_{48} \) Non-split multiplicative 1 48 48
\( \left(-a^{3} + 2 a^{2} + 2 a - 1\right) \) 11 \(2\) \( I_{6} \) Non-split multiplicative 1 6 6

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6, 8, 12 and 24.
Its isogeny class 22.1-a consists of curves linked by isogenies of degrees dividing 24.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It has not yet been determined whether or not it is a \(\Q\)-curve.