Properties

Label 4.4.2777.1-16.1-b4
Base field 4.4.2777.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, 1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a^{2}-a-1\right){y}={x}^{3}+\left(-a^{3}+2a^{2}+2a-3\right){x}^{2}+\left(559a^{3}-1437a^{2}-22a+670\right){x}+15729a^{3}-39584a^{2}-3004a+20573\)
sage: E = EllipticCurve([K([1,0,0,0]),K([-3,2,2,-1]),K([-1,-1,1,0]),K([670,-22,-1437,559]),K([20573,-3004,-39584,15729])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([-3,2,2,-1]),Polrev([-1,-1,1,0]),Polrev([670,-22,-1437,559]),Polrev([20573,-3004,-39584,15729])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![-3,2,2,-1],K![-1,-1,1,0],K![670,-22,-1437,559],K![20573,-3004,-39584,15729]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((-a)\cdot(a^3-a^2-4a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2\cdot8\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1146a^3-1534a^2-2492a+1618)\) = \((-a)\cdot(a^3-a^2-4a+1)^{14}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -8796093022208 \) = \(-2\cdot8^{14}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{14221956074310291}{16384} a^{3} + \frac{19421003373675559}{16384} a^{2} - \frac{5542858545784381}{8192} a - \frac{1512226792940977}{2048} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{29}{4} a^{3} + \frac{75}{4} a^{2} - \frac{11}{2} a + \frac{3}{4} : \frac{29}{8} a^{3} - \frac{79}{8} a^{2} + \frac{13}{4} a + \frac{1}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.46073358832512125000994325648620865136 \)
Tamagawa product: \( 14 \)  =  \(1\cdot( 2 \cdot 7 )\)
Torsion order: \(2\)
Leading coefficient: \( 1.49942952695583 \)
Analytic order of Ш: \( 49 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(2\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((a^3-a^2-4a+1)\) \(8\) \(14\) \(I_{14}\) Split multiplicative \(-1\) \(1\) \(14\) \(14\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 16.1-b consists of curves linked by isogenies of degrees dividing 14.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.