Properties

Base field 4.4.2777.1
Label 4.4.2777.1-16.1-a5
Conductor \((2,2)\)
Conductor norm \( 16 \)
CM no
base-change no
Q-curve no
Torsion order \( 6 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^4 - x^3 - 4*x^2 + x + 2)
gp (2.8): K = nfinit(a^4 - a^3 - 4*a^2 + a + 2);

Weierstrass equation

\( y^2 + x y + \left(a^{2} - 2\right) y = x^{3} + \left(a^{3} - a^{2} - 4 a + 1\right) x^{2} + \left(110 a^{3} - 287 a^{2} + 7 a + 128\right) x - 927 a^{3} + 2286 a^{2} + 326 a - 1304 \)
magma: E := ChangeRing(EllipticCurve([1, a^3 - a^2 - 4*a + 1, a^2 - 2, 110*a^3 - 287*a^2 + 7*a + 128, -927*a^3 + 2286*a^2 + 326*a - 1304]),K);
sage: E = EllipticCurve(K, [1, a^3 - a^2 - 4*a + 1, a^2 - 2, 110*a^3 - 287*a^2 + 7*a + 128, -927*a^3 + 2286*a^2 + 326*a - 1304])
gp (2.8): E = ellinit([1, a^3 - a^2 - 4*a + 1, a^2 - 2, 110*a^3 - 287*a^2 + 7*a + 128, -927*a^3 + 2286*a^2 + 326*a - 1304],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((2,2)\) = \( \left(a^{3} - a^{2} - 4 a + 1\right) \cdot \left(-a\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 16 \) = \( 2 \cdot 8 \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((8,2 a + 4,2 a^{3} - 2 a^{2} - 6 a + 4,2 a^{2} - 2 a - 4)\) = \( \left(a^{3} - a^{2} - 4 a + 1\right) \cdot \left(-a\right)^{3} \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 64 \) = \( 2^{3} \cdot 8 \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( \frac{26337901600044709}{8} a^{3} + \frac{35881160809650025}{8} a^{2} - \frac{10294045696327409}{4} a - \frac{22298133469852751}{8} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: \(\Z/6\Z\)
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
Generator: $\left(-2 a^{3} + 3 a^{2} + 6 a - 3 : -9 a^{3} + 22 a^{2} + a - 9 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a\right) \) \(2\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\( \left(a^{3} - a^{2} - 4 a + 1\right) \) \(8\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 16.1-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.