Properties

Label 4.4.19821.1-9.1-a2
Base field 4.4.19821.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19821.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 8 x^{2} + 6 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 6, -8, -1, 1]))
 
gp: K = nfinit(Polrev([3, 6, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 6, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-4\right){x}{y}+\left(a^{2}-4\right){y}={x}^{3}+\left(\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-4a\right){x}^{2}+\left(-a^{3}+3a^{2}+8a+4\right){x}+3a^{3}+8a^{2}-11a-3\)
sage: E = EllipticCurve([K([-4,0,1,0]),K([0,-4,1/3,1/3]),K([-4,0,1,0]),K([4,8,3,-1]),K([-3,-11,8,3])])
 
gp: E = ellinit([Polrev([-4,0,1,0]),Polrev([0,-4,1/3,1/3]),Polrev([-4,0,1,0]),Polrev([4,8,3,-1]),Polrev([-3,-11,8,3])], K);
 
magma: E := EllipticCurve([K![-4,0,1,0],K![0,-4,1/3,1/3],K![-4,0,1,0],K![4,8,3,-1],K![-3,-11,8,3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-1/3a^3+2/3a^2+2a-4)\) = \((-1/3a^3-1/3a^2+3a+2)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-68/3a^3+94/3a^2+157a-92)\) = \((-1/3a^3-1/3a^2+3a+2)^{17}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 129140163 \) = \(3^{17}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{73343}{729} a^{3} + \frac{24131}{729} a^{2} + \frac{615892}{729} a + \frac{18719}{27} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0 \le r \le 1\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0 \le r \le 1\)
Regulator: not available
Period: \( 141.16032383539687554461428607657702180 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 3.74224295426146 \)
Analytic order of Ш: not available

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/3a^3-1/3a^2+3a+2)\) \(3\) \(2\) \(I_{11}^{*}\) Additive \(-1\) \(2\) \(17\) \(11\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(11\) 11B.10.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 11.
Its isogeny class 9.1-a consists of curves linked by isogenies of degree 11.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.