Properties

Label 4.4.19821.1-57.1-c1
Base field 4.4.19821.1
Conductor norm \( 57 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19821.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 8 x^{2} + 6 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 6, -8, -1, 1]))
 
gp: K = nfinit(Polrev([3, 6, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 6, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-4\right){x}{y}+\left(a^{2}-a-4\right){y}={x}^{3}+\left(-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+3a\right){x}^{2}+\left(\frac{106}{3}a^{3}+\frac{10}{3}a^{2}-278a-102\right){x}+883a^{3}+93a^{2}-6961a-2401\)
sage: E = EllipticCurve([K([-4,-1,1,0]),K([0,3,-1/3,-1/3]),K([-4,-1,1,0]),K([-102,-278,10/3,106/3]),K([-2401,-6961,93,883])])
 
gp: E = ellinit([Polrev([-4,-1,1,0]),Polrev([0,3,-1/3,-1/3]),Polrev([-4,-1,1,0]),Polrev([-102,-278,10/3,106/3]),Polrev([-2401,-6961,93,883])], K);
 
magma: E := EllipticCurve([K![-4,-1,1,0],K![0,3,-1/3,-1/3],K![-4,-1,1,0],K![-102,-278,10/3,106/3],K![-2401,-6961,93,883]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-1/3a^3+2/3a^2+3a-1)\) = \((-1/3a^3-1/3a^2+3a+2)\cdot(1/3a^3-2/3a^2-2a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 57 \) = \(3\cdot19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1/3a^3-104/3a^2+28a+61)\) = \((-1/3a^3-1/3a^2+3a+2)^{14}\cdot(1/3a^3-2/3a^2-2a+5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -90876411 \) = \(-3^{14}\cdot19\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{404963364612649}{4617} a^{3} + \frac{4913008494921869}{41553} a^{2} + \frac{27447645111084058}{41553} a - \frac{31419748638630586}{41553} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0 \le r \le 1\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0 \le r \le 1\)
Regulator: not available
Period: \( 18.868263001341126291400762296778027010 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 3.89578389367109 \)
Analytic order of Ш: not available

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/3a^3-1/3a^2+3a+2)\) \(3\) \(2\) \(I_{14}\) Non-split multiplicative \(1\) \(1\) \(14\) \(14\)
\((1/3a^3-2/3a^2-2a+5)\) \(19\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 57.1-c consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.