Properties

Label 4.4.19821.1-48.1-b1
Base field 4.4.19821.1
Conductor norm \( 48 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19821.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 8 x^{2} + 6 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 6, -8, -1, 1]))
 
gp: K = nfinit(Polrev([3, 6, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 6, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-\frac{1}{3}a^{3}+\frac{2}{3}a^{2}+3a-3\right){x}{y}+\left(\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-3a-1\right){y}={x}^{3}+\left(\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-2a-2\right){x}^{2}+\left(-\frac{82}{3}a^{3}+\frac{113}{3}a^{2}+211a-238\right){x}+\frac{478}{3}a^{3}-\frac{626}{3}a^{2}-1188a+1349\)
sage: E = EllipticCurve([K([-3,3,2/3,-1/3]),K([-2,-2,1/3,1/3]),K([-1,-3,1/3,1/3]),K([-238,211,113/3,-82/3]),K([1349,-1188,-626/3,478/3])])
 
gp: E = ellinit([Polrev([-3,3,2/3,-1/3]),Polrev([-2,-2,1/3,1/3]),Polrev([-1,-3,1/3,1/3]),Polrev([-238,211,113/3,-82/3]),Polrev([1349,-1188,-626/3,478/3])], K);
 
magma: E := EllipticCurve([K![-3,3,2/3,-1/3],K![-2,-2,1/3,1/3],K![-1,-3,1/3,1/3],K![-238,211,113/3,-82/3],K![1349,-1188,-626/3,478/3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2/3a^3-2/3a^2+6a+4)\) = \((-1/3a^3-1/3a^2+3a+2)\cdot(2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 48 \) = \(3\cdot16\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2/3a^3+10/3a^2-2a+4)\) = \((-1/3a^3-1/3a^2+3a+2)^{6}\cdot(2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 11664 \) = \(3^{6}\cdot16\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{929865652521983315}{27} a^{3} - \frac{1138774984127055649}{9} a^{2} + \frac{1130881571253629065}{18} a + \frac{2086461174223332295}{54} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 32.823038199848676826755305823210401427 \)
Tamagawa product: \( 6 \)  =  \(( 2 \cdot 3 )\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 1.39883744028878 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/3a^3-1/3a^2+3a+2)\) \(3\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((2)\) \(16\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 48.1-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.