Properties

Label 4.4.19821.1-39.1-a1
Base field 4.4.19821.1
Conductor norm \( 39 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19821.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 8 x^{2} + 6 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 6, -8, -1, 1]))
 
gp: K = nfinit(Polrev([3, 6, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 6, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-2a-1\right){y}={x}^{3}-{x}^{2}+\left(\frac{4}{3}a^{3}-\frac{14}{3}a^{2}+2a+2\right){x}-\frac{4}{3}a^{3}+\frac{14}{3}a^{2}-3a-2\)
sage: E = EllipticCurve([K([0,0,0,0]),K([-1,0,0,0]),K([-1,-2,1/3,1/3]),K([2,2,-14/3,4/3]),K([-2,-3,14/3,-4/3])])
 
gp: E = ellinit([Polrev([0,0,0,0]),Polrev([-1,0,0,0]),Polrev([-1,-2,1/3,1/3]),Polrev([2,2,-14/3,4/3]),Polrev([-2,-3,14/3,-4/3])], K);
 
magma: E := EllipticCurve([K![0,0,0,0],K![-1,0,0,0],K![-1,-2,1/3,1/3],K![2,2,-14/3,4/3],K![-2,-3,14/3,-4/3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-7a+6)\) = \((-1/3a^3-1/3a^2+3a+2)\cdot(-2/3a^3+1/3a^2+5a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 39 \) = \(3\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((10/3a^3-20/3a^2-26a+19)\) = \((-1/3a^3-1/3a^2+3a+2)^{9}\cdot(-2/3a^3+1/3a^2+5a)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -255879 \) = \(-3^{9}\cdot13\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{111853568}{3159} a^{3} + \frac{12132352}{3159} a^{2} - \frac{882774016}{3159} a - \frac{100966400}{1053} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 165.09932539881599504037863066055503288 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 1.17268809958076 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/3a^3-1/3a^2+3a+2)\) \(3\) \(1\) \(I_{9}\) Non-split multiplicative \(1\) \(1\) \(9\) \(9\)
\((-2/3a^3+1/3a^2+5a)\) \(13\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 39.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.