Properties

Base field 4.4.19821.1
Label 4.4.19821.1-29.2-b1
Conductor \((29,-\frac{1}{3} a^{3} + \frac{2}{3} a^{2} + 2 a)\)
Conductor norm \( 29 \)
CM no
base-change no
Q-curve yes
Torsion order \( 3 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 4.4.19821.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 8 x^{2} + 6 x + 3 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 6, -8, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^4 - x^3 - 8*x^2 + 6*x + 3)
gp (2.8): K = nfinit(a^4 - a^3 - 8*a^2 + 6*a + 3);

Weierstrass equation

\( y^2 + \left(-\frac{1}{3} a^{3} + \frac{2}{3} a^{2} + 3 a - 3\right) x y = x^{3} + \left(\frac{2}{3} a^{3} - \frac{1}{3} a^{2} - 4 a + 2\right) x^{2} + \left(\frac{2}{3} a^{3} - \frac{7}{3} a^{2} - 8 a + 10\right) x - 7 a^{3} - 15 a^{2} + 15 a + 13 \)
magma: E := ChangeRing(EllipticCurve([-1/3*a^3 + 2/3*a^2 + 3*a - 3, 2/3*a^3 - 1/3*a^2 - 4*a + 2, 0, 2/3*a^3 - 7/3*a^2 - 8*a + 10, -7*a^3 - 15*a^2 + 15*a + 13]),K);
sage: E = EllipticCurve(K, [-1/3*a^3 + 2/3*a^2 + 3*a - 3, 2/3*a^3 - 1/3*a^2 - 4*a + 2, 0, 2/3*a^3 - 7/3*a^2 - 8*a + 10, -7*a^3 - 15*a^2 + 15*a + 13])
gp (2.8): E = ellinit([-1/3*a^3 + 2/3*a^2 + 3*a - 3, 2/3*a^3 - 1/3*a^2 - 4*a + 2, 0, 2/3*a^3 - 7/3*a^2 - 8*a + 10, -7*a^3 - 15*a^2 + 15*a + 13],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((29,-\frac{1}{3} a^{3} + \frac{2}{3} a^{2} + 2 a)\) = \( \left(-\frac{1}{3} a^{3} - \frac{1}{3} a^{2} + a - 2\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 29 \) = \( 29 \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((24389,a + 14638,\frac{1}{3} a^{3} + \frac{1}{3} a^{2} - 3 a + 16401,-\frac{1}{3} a^{3} + \frac{2}{3} a^{2} + 2 a + 4060)\) = \( \left(-\frac{1}{3} a^{3} - \frac{1}{3} a^{2} + a - 2\right)^{3} \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 24389 \) = \( 29^{3} \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( -\frac{136474053}{24389} a^{3} + \frac{759835410}{24389} a^{2} - \frac{1394989701}{24389} a + \frac{985114313}{24389} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: \(\Z/3\Z\)
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
Generator: $\left(\frac{2}{3} a^{2} + \frac{4}{3} a - \frac{1}{3} : \frac{4}{9} a^{3} + \frac{11}{9} a^{2} - \frac{8}{9} a - \frac{8}{3} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-\frac{1}{3} a^{3} - \frac{1}{3} a^{2} + a - 2\right) \) \(29\) \(3\) \( I_{3} \) Split multiplicative \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 29.2-b consists of curves linked by isogenies of degree3.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.