Properties

Label 4.4.19821.1-29.2-b1
Base field 4.4.19821.1
Conductor norm \( 29 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19821.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 8 x^{2} + 6 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 6, -8, -1, 1]))
 
gp: K = nfinit(Polrev([3, 6, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 6, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-\frac{1}{3}a^{3}+\frac{2}{3}a^{2}+3a-3\right){x}{y}={x}^{3}+\left(\frac{2}{3}a^{3}-\frac{1}{3}a^{2}-4a+2\right){x}^{2}+\left(\frac{2}{3}a^{3}-\frac{7}{3}a^{2}-8a+10\right){x}-7a^{3}-15a^{2}+15a+13\)
sage: E = EllipticCurve([K([-3,3,2/3,-1/3]),K([2,-4,-1/3,2/3]),K([0,0,0,0]),K([10,-8,-7/3,2/3]),K([13,15,-15,-7])])
 
gp: E = ellinit([Polrev([-3,3,2/3,-1/3]),Polrev([2,-4,-1/3,2/3]),Polrev([0,0,0,0]),Polrev([10,-8,-7/3,2/3]),Polrev([13,15,-15,-7])], K);
 
magma: E := EllipticCurve([K![-3,3,2/3,-1/3],K![2,-4,-1/3,2/3],K![0,0,0,0],K![10,-8,-7/3,2/3],K![13,15,-15,-7]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-1/3a^3-1/3a^2+a-2)\) = \((-1/3a^3-1/3a^2+a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 29 \) = \(29\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^3-4a^2-12a+29)\) = \((-1/3a^3-1/3a^2+a-2)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -24389 \) = \(-29^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{136474053}{24389} a^{3} + \frac{759835410}{24389} a^{2} - \frac{1394989701}{24389} a + \frac{985114313}{24389} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{2}{3} a^{3} + \frac{5}{3} a^{2} - a - 1 : \frac{10}{3} a^{3} + \frac{19}{3} a^{2} - 8 a - 3 : 1\right)$
Height \(0.26419582443333719242577617128997089963\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{2}{3} a^{2} + \frac{4}{3} a - \frac{1}{3} : \frac{4}{9} a^{3} + \frac{11}{9} a^{2} - \frac{8}{9} a - \frac{8}{3} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.26419582443333719242577617128997089963 \)
Period: \( 1021.9073711637454102079483204618141123 \)
Tamagawa product: \( 3 \)
Torsion order: \(3\)
Leading coefficient: \( 2.55689819761485 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/3a^3-1/3a^2+a-2)\) \(29\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 29.2-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.