Properties

Label 4.4.19796.1-10.2-d2
Base field 4.4.19796.1
Conductor norm \( 10 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19796.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 7 x^{2} + x + 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([8, 1, -7, -1, 1]))
 
gp: K = nfinit(Polrev([8, 1, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, 1, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+a{y}={x}^{3}+\left(a^{3}-2a^{2}-4a+3\right){x}^{2}+\left(-97a^{3}-193a^{2}+110a+257\right){x}-2269a^{3}-4424a^{2}+2845a+6149\)
sage: E = EllipticCurve([K([1,0,0,0]),K([3,-4,-2,1]),K([0,1,0,0]),K([257,110,-193,-97]),K([6149,2845,-4424,-2269])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([3,-4,-2,1]),Polrev([0,1,0,0]),Polrev([257,110,-193,-97]),Polrev([6149,2845,-4424,-2269])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![3,-4,-2,1],K![0,1,0,0],K![257,110,-193,-97],K![6149,2845,-4424,-2269]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a+2)\) = \((-a^2+2)\cdot(a^2+a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 10 \) = \(2\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5a^3-31a^2+19a+96)\) = \((-a^2+2)^{3}\cdot(a^2+a-1)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -625000 \) = \(-2^{3}\cdot5^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1267618337281}{625000} a^{3} + \frac{488374808849}{625000} a^{2} + \frac{2101610388979}{125000} a + \frac{9997063509159}{625000} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-2 a^{3} - a^{2} + 7 a + 5 : 2 a^{3} + a^{2} - 11 a - 11 : 1\right)$
Height \(0.52303180715897640577380623902916810853\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{5}{4} a^{3} - \frac{3}{4} a^{2} + \frac{7}{4} a - \frac{5}{4} : \frac{5}{8} a^{3} + \frac{3}{8} a^{2} - \frac{11}{8} a + \frac{5}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.52303180715897640577380623902916810853 \)
Period: \( 118.20842322784249470577998319277210348 \)
Tamagawa product: \( 7 \)  =  \(1\cdot7\)
Torsion order: \(2\)
Leading coefficient: \( 3.07599653732709 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2+2)\) \(2\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((a^2+a-1)\) \(5\) \(7\) \(I_{7}\) Split multiplicative \(-1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 10.2-d consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.