Properties

Label 4.4.19600.1-25.1-d1
Base field \(\Q(\sqrt{5}, \sqrt{7})\)
Conductor norm \( 25 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{5}, \sqrt{7})\)

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 15 x^{2} + 16 x + 29 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([29, 16, -15, -2, 1]))
 
gp: K = nfinit(Polrev([29, 16, -15, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![29, 16, -15, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(-\frac{2}{23}a^{3}+\frac{3}{23}a^{2}+\frac{43}{23}a-\frac{22}{23}\right){y}={x}^{3}+\left(\frac{96}{23}a^{3}-\frac{144}{23}a^{2}-\frac{2064}{23}a-\frac{1865}{23}\right){x}-44a^{3}+66a^{2}+946a+853\)
sage: E = EllipticCurve([K([0,0,0,0]),K([0,0,0,0]),K([-22/23,43/23,3/23,-2/23]),K([-1865/23,-2064/23,-144/23,96/23]),K([853,946,66,-44])])
 
gp: E = ellinit([Polrev([0,0,0,0]),Polrev([0,0,0,0]),Polrev([-22/23,43/23,3/23,-2/23]),Polrev([-1865/23,-2064/23,-144/23,96/23]),Polrev([853,946,66,-44])], K);
 
magma: E := EllipticCurve([K![0,0,0,0],K![0,0,0,0],K![-22/23,43/23,3/23,-2/23],K![-1865/23,-2064/23,-144/23,96/23],K![853,946,66,-44]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((4/23a^3-6/23a^2-40/23a+21/23)\) = \((4/23a^3-6/23a^2-40/23a+21/23)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-125)\) = \((4/23a^3-6/23a^2-40/23a+21/23)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 244140625 \) = \(25^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{110592}{125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 148.30156367778230507597189046333948622 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 2.11859376682546 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((4/23a^3-6/23a^2-40/23a+21/23)\) \(25\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Nn

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 25.1-d consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q(\sqrt{7}) \) 2.2.28.1-25.1-b1
\(\Q(\sqrt{7}) \) 2.2.28.1-625.1-b1