Properties

Label 4.4.19600.1-16.1-b1
Base field \(\Q(\sqrt{5}, \sqrt{7})\)
Conductor norm \( 16 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{5}, \sqrt{7})\)

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 15 x^{2} + 16 x + 29 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([29, 16, -15, -2, 1]))
 
gp: K = nfinit(Polrev([29, 16, -15, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![29, 16, -15, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(-\frac{3}{23}a^{3}+\frac{16}{23}a^{2}+\frac{30}{23}a-\frac{125}{23}\right){x}{y}+\left(-\frac{1}{23}a^{3}+\frac{13}{23}a^{2}-\frac{13}{23}a-\frac{80}{23}\right){y}={x}^{3}+\left(-\frac{5}{23}a^{3}-\frac{4}{23}a^{2}+\frac{96}{23}a+\frac{37}{23}\right){x}^{2}+\left(\frac{28}{23}a^{3}-\frac{249}{23}a^{2}+\frac{502}{23}a+\frac{193}{23}\right){x}-\frac{514}{23}a^{3}+\frac{2473}{23}a^{2}+\frac{195}{23}a-\frac{5953}{23}\)
sage: E = EllipticCurve([K([-125/23,30/23,16/23,-3/23]),K([37/23,96/23,-4/23,-5/23]),K([-80/23,-13/23,13/23,-1/23]),K([193/23,502/23,-249/23,28/23]),K([-5953/23,195/23,2473/23,-514/23])])
 
gp: E = ellinit([Polrev([-125/23,30/23,16/23,-3/23]),Polrev([37/23,96/23,-4/23,-5/23]),Polrev([-80/23,-13/23,13/23,-1/23]),Polrev([193/23,502/23,-249/23,28/23]),Polrev([-5953/23,195/23,2473/23,-514/23])], K);
 
magma: E := EllipticCurve([K![-125/23,30/23,16/23,-3/23],K![37/23,96/23,-4/23,-5/23],K![-80/23,-13/23,13/23,-1/23],K![193/23,502/23,-249/23,28/23],K![-5953/23,195/23,2473/23,-514/23]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((3/23a^3+7/23a^2-53/23a-128/23)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(4^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((16)\) = \((3/23a^3+7/23a^2-53/23a-128/23)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 65536 \) = \(4^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{100368408}{23} a^{3} - \frac{150552612}{23} a^{2} - \frac{2157920772}{23} a + \frac{4157915944}{23} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{9}{46} a^{3} + \frac{24}{23} a^{2} + \frac{21}{46} a - \frac{283}{46} : -\frac{11}{46} a^{3} + \frac{33}{92} a^{2} + \frac{473}{92} a - \frac{909}{92} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 419.49484915123775133494304704779432957 \)
Tamagawa product: \( 3 \)
Torsion order: \(2\)
Leading coefficient: \( 2.24729383473877 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3/23a^3+7/23a^2-53/23a-128/23)\) \(4\) \(3\) \(IV^{*}\) Additive \(1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 16.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.