Properties

Label 4.4.19225.1-9.2-b8
Base field 4.4.19225.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19225.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 15 x^{2} + 2 x + 44 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([44, 2, -15, -1, 1]))
 
gp: K = nfinit(Polrev([44, 2, -15, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![44, 2, -15, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{3}-\frac{3}{2}a^{2}-\frac{5}{2}a+9\right){x}{y}+\left(-a^{3}+4a^{2}+6a-22\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}-\frac{3}{2}a^{2}-\frac{5}{2}a+8\right){x}^{2}+\left(-64a^{3}+220a^{2}+464a-1238\right){x}+\frac{1809}{2}a^{3}-\frac{6007}{2}a^{2}-\frac{13031}{2}a+16959\)
sage: E = EllipticCurve([K([9,-5/2,-3/2,1/2]),K([8,-5/2,-3/2,1/2]),K([-22,6,4,-1]),K([-1238,464,220,-64]),K([16959,-13031/2,-6007/2,1809/2])])
 
gp: E = ellinit([Polrev([9,-5/2,-3/2,1/2]),Polrev([8,-5/2,-3/2,1/2]),Polrev([-22,6,4,-1]),Polrev([-1238,464,220,-64]),Polrev([16959,-13031/2,-6007/2,1809/2])], K);
 
magma: E := EllipticCurve([K![9,-5/2,-3/2,1/2],K![8,-5/2,-3/2,1/2],K![-22,6,4,-1],K![-1238,464,220,-64],K![16959,-13031/2,-6007/2,1809/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((3/2a^3-11/2a^2-19/2a+31)\) = \((3/2a^3-11/2a^2-19/2a+31)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((9/2a^3-31/2a^2-59/2a+89)\) = \((3/2a^3-11/2a^2-19/2a+31)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -6561 \) = \(-9^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{148735529594573}{162} a^{3} - \frac{44389227275927}{54} a^{2} + \frac{1978654649544127}{162} a + \frac{575471171779328}{27} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{17}{4} a^{3} - \frac{59}{4} a^{2} - \frac{61}{2} a + 85 : \frac{145}{8} a^{3} - \frac{237}{4} a^{2} - 131 a + 332 : 1\right)$
Height \(2.3843167261047738450544367727045423333\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{35}{8} a^{3} + \frac{115}{8} a^{2} + \frac{249}{8} a - \frac{167}{2} : \frac{13}{8} a^{3} - \frac{37}{8} a^{2} - \frac{75}{8} a + \frac{223}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.3843167261047738450544367727045423333 \)
Period: \( 57.606375284767081023797471751060590644 \)
Tamagawa product: \( 4 \)
Torsion order: \(2\)
Leading coefficient: \( 3.96242734276914 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3/2a^3-11/2a^2-19/2a+31)\) \(9\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 9.2-b consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.