Properties

Label 4.4.19225.1-9.2-b1
Base field 4.4.19225.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19225.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 15 x^{2} + 2 x + 44 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([44, 2, -15, -1, 1]))
 
gp: K = nfinit(Polrev([44, 2, -15, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![44, 2, -15, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{3}+4a^{2}+7a-23\right){x}{y}={x}^{3}+\left(-a^{3}+4a^{2}+5a-24\right){x}^{2}+\left(\frac{3}{2}a^{3}-\frac{1}{2}a^{2}-\frac{59}{2}a-40\right){x}+714a^{3}+2139a^{2}-2226a-7767\)
sage: E = EllipticCurve([K([-23,7,4,-1]),K([-24,5,4,-1]),K([0,0,0,0]),K([-40,-59/2,-1/2,3/2]),K([-7767,-2226,2139,714])])
 
gp: E = ellinit([Polrev([-23,7,4,-1]),Polrev([-24,5,4,-1]),Polrev([0,0,0,0]),Polrev([-40,-59/2,-1/2,3/2]),Polrev([-7767,-2226,2139,714])], K);
 
magma: E := EllipticCurve([K![-23,7,4,-1],K![-24,5,4,-1],K![0,0,0,0],K![-40,-59/2,-1/2,3/2],K![-7767,-2226,2139,714]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((3/2a^3-11/2a^2-19/2a+31)\) = \((3/2a^3-11/2a^2-19/2a+31)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1/2a^3-5/2a^2-9/2a+8)\) = \((3/2a^3-11/2a^2-19/2a+31)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -729 \) = \(-9^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{75722293}{18} a^{3} - \frac{781238521}{54} a^{2} - \frac{534563591}{18} a + \frac{2256140557}{27} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{1}{2} a^{3} + \frac{3}{2} a^{2} + \frac{1}{2} a - 2 : -\frac{17}{2} a^{3} - \frac{39}{2} a^{2} + \frac{67}{2} a + 73 : 1\right)$
Height \(0.19869306050873115375453639772537852777\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{3}{4} a^{3} - \frac{3}{2} a^{2} + 5 a + \frac{35}{4} : \frac{1}{4} a^{3} + \frac{53}{8} a^{2} + \frac{37}{8} a - \frac{207}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.19869306050873115375453639772537852777 \)
Period: \( 921.70200455627329638075954801696945031 \)
Tamagawa product: \( 3 \)
Torsion order: \(2\)
Leading coefficient: \( 3.96242734276914 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3/2a^3-11/2a^2-19/2a+31)\) \(9\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 9.2-b consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.