Properties

Label 4.4.18625.1-5.1-d5
Base field 4.4.18625.1
Conductor norm \( 5 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.18625.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 14 x^{2} + 9 x + 41 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([41, 9, -14, -1, 1]))
 
gp: K = nfinit(Polrev([41, 9, -14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, 9, -14, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+\left(-a^{2}+a+7\right){x}^{2}+\left(53a^{3}+81a^{2}-552a-908\right){x}+690a^{3}+1011a^{2}-7158a-11443\)
sage: E = EllipticCurve([K([1,0,0,0]),K([7,1,-1,0]),K([1,0,0,0]),K([-908,-552,81,53]),K([-11443,-7158,1011,690])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([7,1,-1,0]),Polrev([1,0,0,0]),Polrev([-908,-552,81,53]),Polrev([-11443,-7158,1011,690])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![7,1,-1,0],K![1,0,0,0],K![-908,-552,81,53],K![-11443,-7158,1011,690]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/2a^3+a^2-5a-21/2)\) = \((1/2a^3+a^2-5a-21/2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5 \) = \(5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1/3a^3-8/3a-2/3)\) = \((1/2a^3+a^2-5a-21/2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 25 \) = \(5^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{540473}{5} a^{3} + \frac{1220538}{5} a^{2} - \frac{3552673}{5} a - \frac{6688053}{5} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-17 a^{3} - 25 a^{2} + 176 a + 284 : -\frac{875}{3} a^{3} - 428 a^{2} + \frac{9079}{3} a + \frac{14524}{3} : 1\right)$
Height \(0.57768645107962011198383452552595973651\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{5}{4} a^{3} + \frac{7}{4} a^{2} - \frac{53}{4} a - 19 : -\frac{5}{8} a^{3} - \frac{7}{8} a^{2} + \frac{53}{8} a + 9 : 1\right)$ $\left(\frac{2}{3} a^{3} + 2 a^{2} - \frac{22}{3} a - \frac{61}{3} : -\frac{1}{3} a^{3} - a^{2} + \frac{11}{3} a + \frac{29}{3} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.57768645107962011198383452552595973651 \)
Period: \( 1058.5746171592916380727413433323562722 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 2.24045136886674 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3+a^2-5a-21/2)\) \(5\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 5.1-d consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.