Properties

Label 4.4.17609.1-2.1-b1
Base field 4.4.17609.1
Conductor norm \( 2 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.17609.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 7 x^{2} + 10 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 10, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 10, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 10, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a^{3}+a^{2}-5a-1\right){y}={x}^{3}+\left(-a^{2}-2a+5\right){x}^{2}+\left(15a^{3}+6a^{2}-97a+18\right){x}+26a^{3}+12a^{2}-165a+21\)
sage: E = EllipticCurve([K([0,1,0,0]),K([5,-2,-1,0]),K([-1,-5,1,1]),K([18,-97,6,15]),K([21,-165,12,26])])
 
gp: E = ellinit([Polrev([0,1,0,0]),Polrev([5,-2,-1,0]),Polrev([-1,-5,1,1]),Polrev([18,-97,6,15]),Polrev([21,-165,12,26])], K);
 
magma: E := EllipticCurve([K![0,1,0,0],K![5,-2,-1,0],K![-1,-5,1,1],K![18,-97,6,15],K![21,-165,12,26]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3+a^2-5a+1)\) = \((a^3+a^2-5a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2 \) = \(2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^3-a^2-9a+10)\) = \((a^3+a^2-5a+1)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1024 \) = \(-2^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{13902918145}{1024} a^{3} + \frac{8433777799}{512} a^{2} - \frac{59975003189}{1024} a + \frac{6307656687}{1024} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{3} + a^{2} - 5 a - 1 : -3 a^{3} - 2 a^{2} + 18 a - 1 : 1\right)$
Height \(0.095999855190781272982368037317809530287\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{5}{4} a - \frac{5}{4} : -\frac{3}{4} a^{3} - \frac{3}{4} a^{2} + \frac{35}{8} a + \frac{3}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.095999855190781272982368037317809530287 \)
Period: \( 376.96093132674340912743245500978118826 \)
Tamagawa product: \( 10 \)
Torsion order: \(2\)
Leading coefficient: \( 2.72709064112431 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+a^2-5a+1)\) \(2\) \(10\) \(I_{10}\) Split multiplicative \(-1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 2.1-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.