Properties

Label 4.4.17609.1-14.1-d2
Base field 4.4.17609.1
Conductor norm \( 14 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.17609.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 7 x^{2} + 10 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 10, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 10, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 10, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{3}+a^{2}-11a+3\right){x}{y}+\left(a^{3}-6a+3\right){y}={x}^{3}+\left(a^{3}+a^{2}-5a-2\right){x}^{2}+\left(986a^{3}+480a^{2}-6186a+662\right){x}+25024a^{3}+12147a^{2}-157124a+16845\)
sage: E = EllipticCurve([K([3,-11,1,2]),K([-2,-5,1,1]),K([3,-6,0,1]),K([662,-6186,480,986]),K([16845,-157124,12147,25024])])
 
gp: E = ellinit([Polrev([3,-11,1,2]),Polrev([-2,-5,1,1]),Polrev([3,-6,0,1]),Polrev([662,-6186,480,986]),Polrev([16845,-157124,12147,25024])], K);
 
magma: E := EllipticCurve([K![3,-11,1,2],K![-2,-5,1,1],K![3,-6,0,1],K![662,-6186,480,986],K![16845,-157124,12147,25024]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3+a^2-6a)\) = \((a^3+a^2-5a+1)\cdot(-a^3+6a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 14 \) = \(2\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((37a^3-433a^2-282a+2636)\) = \((a^3+a^2-5a+1)^{34}\cdot(-a^3+6a-2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -841813590016 \) = \(-2^{34}\cdot7^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1402574522628382639}{841813590016} a^{3} - \frac{348633256698689353}{420906795008} a^{2} + \frac{8799534999868774715}{841813590016} a - \frac{844138674551993185}{841813590016} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-10 a^{3} + a^{2} + 78 a - 8 : -39 a^{3} + 15 a^{2} + 335 a - 38 : 1\right)$
Height \(1.6212225063801513242248252850787733590\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{17}{2} a^{3} + 4 a^{2} - \frac{217}{4} a + \frac{25}{4} : \frac{161}{8} a^{3} + \frac{43}{4} a^{2} - \frac{251}{2} a + \frac{95}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.6212225063801513242248252850787733590 \)
Period: \( 38.459778976572122310410014254856290836 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.87949880020666 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+a^2-5a+1)\) \(2\) \(2\) \(I_{34}\) Non-split multiplicative \(1\) \(1\) \(34\) \(34\)
\((-a^3+6a-2)\) \(7\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 14.1-d consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.