Properties

Label 4.4.17609.1-14.1-d1
Base field 4.4.17609.1
Conductor norm \( 14 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.17609.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 7 x^{2} + 10 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 10, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 10, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 10, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(2a^{3}+a^{2}-11a+2\right){y}={x}^{3}+\left(-2a^{3}-a^{2}+12a-2\right){x}^{2}+\left(-7a^{3}+47a-29\right){x}+2a^{3}-3a^{2}-13a+17\)
sage: E = EllipticCurve([K([1,0,0,0]),K([-2,12,-1,-2]),K([2,-11,1,2]),K([-29,47,0,-7]),K([17,-13,-3,2])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([-2,12,-1,-2]),Polrev([2,-11,1,2]),Polrev([-29,47,0,-7]),Polrev([17,-13,-3,2])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![-2,12,-1,-2],K![2,-11,1,2],K![-29,47,0,-7],K![17,-13,-3,2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3+a^2-6a)\) = \((a^3+a^2-5a+1)\cdot(-a^3+6a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 14 \) = \(2\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((73a^3-516a+213)\) = \((a^3+a^2-5a+1)^{17}\cdot(-a^3+6a-2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 314703872 \) = \(2^{17}\cdot7^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{705345550725079}{314703872} a^{3} + \frac{1343251625907103}{157351936} a^{2} - \frac{2604379864571517}{314703872} a + \frac{252085497925447}{314703872} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{3} + 6 a - 2 : 2 a^{3} + 2 a^{2} - 13 a - 5 : 1\right)$
Height \(0.81061125319007566211241264253938667950\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{3}{4} a^{3} - \frac{1}{2} a^{2} - \frac{19}{4} a + \frac{21}{4} : -\frac{11}{8} a^{3} - \frac{1}{4} a^{2} + \frac{63}{8} a - \frac{29}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.81061125319007566211241264253938667950 \)
Period: \( 76.919557953144244620820028509712581672 \)
Tamagawa product: \( 4 \)  =  \(1\cdot2^{2}\)
Torsion order: \(2\)
Leading coefficient: \( 1.87949880020666 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+a^2-5a+1)\) \(2\) \(1\) \(I_{17}\) Non-split multiplicative \(1\) \(1\) \(17\) \(17\)
\((-a^3+6a-2)\) \(7\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 14.1-d consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.