Properties

Label 4.4.17428.1-9.1-d2
Base field 4.4.17428.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.17428.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 6 x^{2} + 4 x + 6 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([6, 4, -6, -1, 1]))
 
gp: K = nfinit(Polrev([6, 4, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6, 4, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a^{2}+a-3\right){y}={x}^{3}+\left(-a^{3}-a^{2}+4a+3\right){x}^{2}+\left(-417a^{3}-570a^{2}+1152a+1056\right){x}-11884a^{3}-16264a^{2}+32779a+30101\)
sage: E = EllipticCurve([K([0,1,0,0]),K([3,4,-1,-1]),K([-3,1,1,0]),K([1056,1152,-570,-417]),K([30101,32779,-16264,-11884])])
 
gp: E = ellinit([Polrev([0,1,0,0]),Polrev([3,4,-1,-1]),Polrev([-3,1,1,0]),Polrev([1056,1152,-570,-417]),Polrev([30101,32779,-16264,-11884])], K);
 
magma: E := EllipticCurve([K![0,1,0,0],K![3,4,-1,-1],K![-3,1,1,0],K![1056,1152,-570,-417],K![30101,32779,-16264,-11884]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2+a-3)\) = \((a^2-a-3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3a^3-10a^2+7a+33)\) = \((a^2-a-3)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 19683 \) = \(3^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -751151 a^{3} + 2332108 a^{2} - 414058 a - 2128398 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{29}{4} a^{3} + \frac{39}{4} a^{2} - \frac{41}{2} a - \frac{37}{2} : -\frac{17}{2} a^{3} - 12 a^{2} + \frac{93}{4} a + \frac{93}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 517.08918002958607604039261154596216381 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.95844635066714 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-a-3)\) \(3\) \(2\) \(III^{*}\) Additive \(1\) \(2\) \(9\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 9.1-d consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.