Properties

Label 4.4.17428.1-9.1-b2
Base field 4.4.17428.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.17428.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 6 x^{2} + 4 x + 6 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([6, 4, -6, -1, 1]))
 
gp: K = nfinit(Polrev([6, 4, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6, 4, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a^{3}-4a-1\right){y}={x}^{3}+\left(-a^{3}+a^{2}+5a-3\right){x}^{2}+\left(-14a^{3}+8a^{2}+120a-144\right){x}-131a^{3}+274a^{2}+446a-854\)
sage: E = EllipticCurve([K([0,1,0,0]),K([-3,5,1,-1]),K([-1,-4,0,1]),K([-144,120,8,-14]),K([-854,446,274,-131])])
 
gp: E = ellinit([Polrev([0,1,0,0]),Polrev([-3,5,1,-1]),Polrev([-1,-4,0,1]),Polrev([-144,120,8,-14]),Polrev([-854,446,274,-131])], K);
 
magma: E := EllipticCurve([K![0,1,0,0],K![-3,5,1,-1],K![-1,-4,0,1],K![-144,120,8,-14],K![-854,446,274,-131]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2+a-3)\) = \((a^2-a-3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^3-a^2-4a+3)\) = \((a^2-a-3)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 27 \) = \(3^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 11017274481 a^{3} - 19695594228 a^{2} - 50589164138 a + 83918179122 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{3}{4} a^{3} + \frac{7}{4} a^{2} + \frac{5}{2} a - \frac{13}{2} : -a^{3} + a^{2} + \frac{15}{4} a - \frac{7}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 96.493081264908561784070569943691232123 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 0.365462148825229 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-a-3)\) \(3\) \(2\) \(III\) Additive \(1\) \(2\) \(3\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 9.1-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.