Properties

Label 4.4.17428.1-12.2-c4
Base field 4.4.17428.1
Conductor norm \( 12 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.17428.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 6 x^{2} + 4 x + 6 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([6, 4, -6, -1, 1]))
 
gp: K = nfinit(Polrev([6, 4, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6, 4, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a^{3}-4a\right){y}={x}^{3}+\left(a^{2}-2\right){x}^{2}+\left(8a^{3}+5a^{2}-42a-33\right){x}+26a^{3}+14a^{2}-136a-105\)
sage: E = EllipticCurve([K([1,0,0,0]),K([-2,0,1,0]),K([0,-4,0,1]),K([-33,-42,5,8]),K([-105,-136,14,26])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([-2,0,1,0]),Polrev([0,-4,0,1]),Polrev([-33,-42,5,8]),Polrev([-105,-136,14,26])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![-2,0,1,0],K![0,-4,0,1],K![-33,-42,5,8],K![-105,-136,14,26]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^3+3a^2-5a-6)\) = \((a^3+a^2-3a-2)\cdot(-a^2+2a+1)\cdot(a^2-a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 12 \) = \(2\cdot2\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-6a^3-4a^2+28a+24)\) = \((a^3+a^2-3a-2)^{6}\cdot(-a^2+2a+1)\cdot(a^2-a-3)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 3456 \) = \(2^{6}\cdot2\cdot3^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{401713}{54} a^{3} + \frac{464851}{108} a^{2} - \frac{235633}{6} a - \frac{3050377}{108} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{5}{4} a^{3} - a^{2} + \frac{13}{2} a + \frac{11}{2} : \frac{1}{8} a^{3} + \frac{1}{2} a^{2} - \frac{5}{4} a - \frac{11}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 318.59796092231442613571744676431711828 \)
Tamagawa product: \( 6 \)  =  \(( 2 \cdot 3 )\cdot1\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 3.62001587731500 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+a^2-3a-2)\) \(2\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((-a^2+2a+1)\) \(2\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((a^2-a-3)\) \(3\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 12.2-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.