Properties

Label 4.4.16997.1-5.2-b2
Base field 4.4.16997.1
Conductor norm \( 5 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.16997.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - x + 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([5, -1, -6, 0, 1]))
 
gp: K = nfinit(Polrev([5, -1, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5, -1, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-3a+2\right){x}{y}+a{y}={x}^{3}+\left(a^{2}+a-3\right){x}^{2}+\left(-1147a^{3}+1237a^{2}+5259a-4929\right){x}-37920a^{3}+42325a^{2}+176448a-163829\)
sage: E = EllipticCurve([K([2,-3,-1,1]),K([-3,1,1,0]),K([0,1,0,0]),K([-4929,5259,1237,-1147]),K([-163829,176448,42325,-37920])])
 
gp: E = ellinit([Polrev([2,-3,-1,1]),Polrev([-3,1,1,0]),Polrev([0,1,0,0]),Polrev([-4929,5259,1237,-1147]),Polrev([-163829,176448,42325,-37920])], K);
 
magma: E := EllipticCurve([K![2,-3,-1,1],K![-3,1,1,0],K![0,1,0,0],K![-4929,5259,1237,-1147],K![-163829,176448,42325,-37920]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2-a+1)\) = \((-a^2-a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5 \) = \(5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^3-5a-3)\) = \((-a^2-a+1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 25 \) = \(5^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{5357496973442499987}{25} a^{3} + \frac{4190018497495156254}{25} a^{2} - \frac{29759807723130703029}{25} a - \frac{6303903372448402516}{5} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{1931311047267}{166430300} a^{3} - \frac{2208580773749}{166430300} a^{2} - \frac{9053260565551}{166430300} a + \frac{4218048007391}{83215150} : -\frac{1342271504794492969}{411881706440} a^{3} + \frac{19206572057197366679}{5148521330500} a^{2} + \frac{6295050386739555759}{411881706440} a - \frac{73293323037603288731}{5148521330500} : 1\right)$
Height \(13.543810162753335093940415076862624058\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 13.543810162753335093940415076862624058 \)
Period: \( 0.13895377824000150379082923899943906993 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 2.88705512498013 \)
Analytic order of Ш: \( 25 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2-a+1)\) \(5\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 5.2-b consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.