Properties

Label 4.4.16448.1-16.1-c3
Base field 4.4.16448.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.16448.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 6 x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, -6, -2, 1]))
 
gp: K = nfinit(Polrev([2, 0, -6, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, -6, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-3a^{2}-3a+2\right){x}{y}+\left(2a^{3}-5a^{2}-7a+2\right){y}={x}^{3}+\left(-a^{2}+2a+3\right){x}^{2}+\left(-4a^{3}+11a^{2}+21a-26\right){x}-20a^{3}+51a^{2}+92a-63\)
sage: E = EllipticCurve([K([2,-3,-3,1]),K([3,2,-1,0]),K([2,-7,-5,2]),K([-26,21,11,-4]),K([-63,92,51,-20])])
 
gp: E = ellinit([Polrev([2,-3,-3,1]),Polrev([3,2,-1,0]),Polrev([2,-7,-5,2]),Polrev([-26,21,11,-4]),Polrev([-63,92,51,-20])], K);
 
magma: E := EllipticCurve([K![2,-3,-3,1],K![3,2,-1,0],K![2,-7,-5,2],K![-26,21,11,-4],K![-63,92,51,-20]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((a)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2)\) = \((a)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 16 \) = \(2^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 6918173802044 a^{3} + 11184587375248 a^{2} - 1057784853504 a - 3825686656612 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{306}{25} a^{3} + \frac{4179}{100} a^{2} + \frac{367}{25} a - \frac{921}{50} : \frac{88491}{1000} a^{3} - \frac{38242}{125} a^{2} - \frac{10739}{125} a + \frac{61289}{500} : 1\right)$
Height \(3.6438702911844038521845942785890012136\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{3}{4} a^{2} - a - \frac{11}{2} : \frac{7}{8} a^{3} - \frac{11}{4} a^{2} - 3 a + \frac{11}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.6438702911844038521845942785890012136 \)
Period: \( 127.09572790998066739791362414628822842 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 3.61108169170893 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(1\) \(II\) Additive \(-1\) \(4\) \(4\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 16.1-c consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.