Elliptic curves in class 16.1-c over 4.4.16448.1
Isogeny class 16.1-c contains
4 curves linked by isogenies of
degrees dividing 4.
Curve label |
Weierstrass Coefficients |
16.1-c1
| \( \bigl[0\) , \( -a^{3} + 3 a^{2} + 4 a - 2\) , \( 2 a^{3} - 5 a^{2} - 7 a + 2\) , \( 4 a^{3} - 14 a^{2} - 6 a + 7\) , \( -6 a^{3} + 17 a^{2} + 7 a - 10\bigr] \)
|
16.1-c2
| \( \bigl[a\) , \( a^{3} - 3 a^{2} - 4 a + 2\) , \( 0\) , \( 182 a^{3} - 266 a^{2} - 1235 a - 667\) , \( -2651 a^{3} + 3863 a^{2} + 18003 a + 9771\bigr] \)
|
16.1-c3
| \( \bigl[a^{3} - 3 a^{2} - 3 a + 2\) , \( -a^{2} + 2 a + 3\) , \( 2 a^{3} - 5 a^{2} - 7 a + 2\) , \( -4 a^{3} + 11 a^{2} + 21 a - 26\) , \( -20 a^{3} + 51 a^{2} + 92 a - 63\bigr] \)
|
16.1-c4
| \( \bigl[a^{3} - 3 a^{2} - 2 a + 2\) , \( -1\) , \( a^{3} - 3 a^{2} - 2 a + 2\) , \( a^{3} - 4 a^{2}\) , \( a^{3} - 4 a^{2} + 2\bigr] \)
|
Rank: \( 1 \)
\(\left(\begin{array}{rrrr}
1 & 4 & 4 & 2 \\
4 & 1 & 4 & 2 \\
4 & 4 & 1 & 2 \\
2 & 2 & 2 & 1
\end{array}\right)\)