Properties

Label 4.4.16448.1-10.1-a1
Base field 4.4.16448.1
Conductor norm \( 10 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.16448.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 6 x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, -6, -2, 1]))
 
gp: K = nfinit(Polrev([2, 0, -6, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, -6, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-3a^{2}-3a+3\right){x}{y}+\left(a^{3}-3a^{2}-3a+2\right){y}={x}^{3}+\left(a^{3}-3a^{2}-4a+2\right){x}^{2}+\left(66a^{3}-99a^{2}-441a-230\right){x}-516a^{3}+750a^{2}+3510a+1912\)
sage: E = EllipticCurve([K([3,-3,-3,1]),K([2,-4,-3,1]),K([2,-3,-3,1]),K([-230,-441,-99,66]),K([1912,3510,750,-516])])
 
gp: E = ellinit([Polrev([3,-3,-3,1]),Polrev([2,-4,-3,1]),Polrev([2,-3,-3,1]),Polrev([-230,-441,-99,66]),Polrev([1912,3510,750,-516])], K);
 
magma: E := EllipticCurve([K![3,-3,-3,1],K![2,-4,-3,1],K![2,-3,-3,1],K![-230,-441,-99,66],K![1912,3510,750,-516]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-3a^2-3a+4)\) = \((a)\cdot(-2a^3+5a^2+9a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 10 \) = \(2\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((6a^3-18a^2-18a+4)\) = \((a)^{5}\cdot(-2a^3+5a^2+9a-3)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -20000 \) = \(-2^{5}\cdot5^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{100210679}{2500} a^{3} - \frac{90943874}{625} a^{2} - \frac{18207153}{625} a + \frac{79650407}{1250} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(2 a^{3} - 5 a^{2} - 9 a + 4 : -a^{3} + 14 a^{2} - 21 a - 62 : 1\right)$
Height \(0.0055026159067906362676745996560631418067\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0055026159067906362676745996560631418067 \)
Period: \( 2194.3348998712322602743735051083092072 \)
Tamagawa product: \( 10 \)  =  \(5\cdot2\)
Torsion order: \(1\)
Leading coefficient: \( 3.76595869494288 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)
\((-2a^3+5a^2+9a-3)\) \(5\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 10.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.