Properties

Label 4.4.16357.1-15.2-b1
Base field 4.4.16357.1
Conductor norm \( 15 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.16357.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, -6, 0, 1]))
 
gp: K = nfinit(Polrev([1, -1, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-5a-3\right){x}{y}+\left(a^{3}+a^{2}-5a-3\right){y}={x}^{3}+\left(-a^{2}-a+3\right){x}^{2}+\left(4a^{3}-2a^{2}-26a-9\right){x}+22a^{3}+6a^{2}-137a-68\)
sage: E = EllipticCurve([K([-3,-5,1,1]),K([3,-1,-1,0]),K([-3,-5,1,1]),K([-9,-26,-2,4]),K([-68,-137,6,22])])
 
gp: E = ellinit([Polrev([-3,-5,1,1]),Polrev([3,-1,-1,0]),Polrev([-3,-5,1,1]),Polrev([-9,-26,-2,4]),Polrev([-68,-137,6,22])], K);
 
magma: E := EllipticCurve([K![-3,-5,1,1],K![3,-1,-1,0],K![-3,-5,1,1],K![-9,-26,-2,4],K![-68,-137,6,22]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+6a-1)\) = \((-a-1)\cdot(a^2+2a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 15 \) = \(3\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5a^3+a^2-32a+2)\) = \((-a-1)^{6}\cdot(a^2+2a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 18225 \) = \(3^{6}\cdot5^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{141544361317964}{18225} a^{3} + \frac{328404077969408}{18225} a^{2} + \frac{87307968145483}{18225} a - \frac{61000042547837}{18225} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{3} + a^{2} - 5 a - 4 : 2 a^{3} - 12 a - 6 : 1\right)$
Height \(0.092267086698763665584567795674922022853\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{3}{4} a^{3} + \frac{1}{2} a^{2} - \frac{21}{4} a - 4 : \frac{19}{8} a^{3} + \frac{7}{8} a^{2} - \frac{51}{4} a - \frac{13}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.092267086698763665584567795674922022853 \)
Period: \( 459.40752215200069890860679692984019452 \)
Tamagawa product: \( 12 \)  =  \(( 2 \cdot 3 )\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 3.97717159681373 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-1)\) \(3\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((a^2+2a)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 15.2-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.