Properties

Label 4.4.14272.1-17.1-b2
Base field 4.4.14272.1
Conductor norm \( 17 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.14272.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 5 x^{2} + 2 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 2, -5, -2, 1]))
 
gp: K = nfinit(Polrev([3, 2, -5, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 2, -5, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{3}-5a^{2}-6a+5\right){x}{y}+\left(2a^{3}-5a^{2}-6a+5\right){y}={x}^{3}+\left(-48a^{3}+130a^{2}+144a-215\right){x}-466a^{3}+1261a^{2}+1414a-1971\)
sage: E = EllipticCurve([K([5,-6,-5,2]),K([0,0,0,0]),K([5,-6,-5,2]),K([-215,144,130,-48]),K([-1971,1414,1261,-466])])
 
gp: E = ellinit([Polrev([5,-6,-5,2]),Polrev([0,0,0,0]),Polrev([5,-6,-5,2]),Polrev([-215,144,130,-48]),Polrev([-1971,1414,1261,-466])], K);
 
magma: E := EllipticCurve([K![5,-6,-5,2],K![0,0,0,0],K![5,-6,-5,2],K![-215,144,130,-48],K![-1971,1414,1261,-466]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-3a^2-2a+2)\) = \((a^3-3a^2-2a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 17 \) = \(17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^3-3a^2-2a+2)\) = \((a^3-3a^2-2a+2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 17 \) = \(17\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{64062278444570}{17} a^{3} + \frac{159030677714743}{17} a^{2} + \frac{222959298472246}{17} a - \frac{198097673386670}{17} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{192593}{27889} a^{3} - \frac{1489767}{223112} a^{2} - \frac{557813}{55778} a + \frac{3935795}{223112} : -\frac{2824317709}{37259704} a^{3} + \frac{2531447425}{149038816} a^{2} + \frac{21748131897}{149038816} a - \frac{7749410225}{149038816} : 1\right)$
Height \(6.9814890990538660613675457511891729565\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(4 a^{3} - 10 a^{2} - 12 a + 13 : -10 a^{3} + 27 a^{2} + 30 a - 44 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 6.9814890990538660613675457511891729565 \)
Period: \( 4.2073408616396067836267906567506340506 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 2.21286975699569 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-3a^2-2a+2)\) \(17\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 17.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.