Properties

Label 4.4.13888.1-28.1-a1
Base field 4.4.13888.1
Conductor norm \( 28 \)
CM no
Base change no
Q-curve no
Torsion order \( 5 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.13888.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 7 x^{2} + 6 x + 9 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([9, 6, -7, -2, 1]))
 
gp: K = nfinit(Polrev([9, 6, -7, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, 6, -7, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-4\right){x}{y}+\left(\frac{1}{3}a^{3}-\frac{2}{3}a^{2}-\frac{1}{3}a+2\right){y}={x}^{3}+\left(-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{7}{3}a+4\right){x}^{2}+\left(-\frac{10}{3}a^{3}+\frac{26}{3}a^{2}+\frac{49}{3}a-26\right){x}+4a^{3}-11a^{2}-16a+39\)
sage: E = EllipticCurve([K([-4,0,1,0]),K([4,7/3,-1/3,-1/3]),K([2,-1/3,-2/3,1/3]),K([-26,49/3,26/3,-10/3]),K([39,-16,-11,4])])
 
gp: E = ellinit([Polrev([-4,0,1,0]),Polrev([4,7/3,-1/3,-1/3]),Polrev([2,-1/3,-2/3,1/3]),Polrev([-26,49/3,26/3,-10/3]),Polrev([39,-16,-11,4])], K);
 
magma: E := EllipticCurve([K![-4,0,1,0],K![4,7/3,-1/3,-1/3],K![2,-1/3,-2/3,1/3],K![-26,49/3,26/3,-10/3],K![39,-16,-11,4]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+a+5)\) = \((1/3a^3-2/3a^2-4/3a+1)\cdot(1/3a^3-2/3a^2-7/3a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 28 \) = \(4\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((192a^3+769a^2-2653a-6679)\) = \((1/3a^3-2/3a^2-4/3a+1)\cdot(1/3a^3-2/3a^2-7/3a+1)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -67228 \) = \(-4\cdot7^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{5814380907}{33614} a^{3} + \frac{16966182151}{33614} a^{2} + \frac{25433678299}{33614} a - \frac{29096936969}{16807} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{5}{6} a^{3} + \frac{13}{6} a^{2} + \frac{10}{3} a - \frac{15}{2} : -\frac{1}{4} a^{3} + 2 a^{2} + \frac{1}{2} a - \frac{27}{4} : 1\right)$
Height \(0.79018609310187034254150770329701755598\)
Torsion structure: \(\Z/5\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(0 : \frac{2}{3} a^{3} - \frac{4}{3} a^{2} - \frac{11}{3} a + 4 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.79018609310187034254150770329701755598 \)
Period: \( 602.07121776438061863079375635130230058 \)
Tamagawa product: \( 5 \)  =  \(1\cdot5\)
Torsion order: \(5\)
Leading coefficient: \( 3.22958992221777 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/3a^3-2/3a^2-4/3a+1)\) \(4\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((1/3a^3-2/3a^2-7/3a+1)\) \(7\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 28.1-a consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.