Properties

Label 4.4.13888.1-16.1-d3
Base field 4.4.13888.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.13888.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 7 x^{2} + 6 x + 9 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([9, 6, -7, -2, 1]))
 
gp: K = nfinit(Polrev([9, 6, -7, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, 6, -7, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{7}{3}a-2\right){x}{y}={x}^{3}+\left(\frac{1}{3}a^{3}-\frac{5}{3}a^{2}-\frac{4}{3}a+6\right){x}^{2}+\left(-4a^{3}+12a^{2}+12a-52\right){x}-\frac{70}{3}a^{3}+\frac{206}{3}a^{2}+\frac{232}{3}a-284\)
sage: E = EllipticCurve([K([-2,-7/3,1/3,1/3]),K([6,-4/3,-5/3,1/3]),K([0,0,0,0]),K([-52,12,12,-4]),K([-284,232/3,206/3,-70/3])])
 
gp: E = ellinit([Polrev([-2,-7/3,1/3,1/3]),Polrev([6,-4/3,-5/3,1/3]),Polrev([0,0,0,0]),Polrev([-52,12,12,-4]),Polrev([-284,232/3,206/3,-70/3])], K);
 
magma: E := EllipticCurve([K![-2,-7/3,1/3,1/3],K![6,-4/3,-5/3,1/3],K![0,0,0,0],K![-52,12,12,-4],K![-284,232/3,206/3,-70/3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((1/3a^3-2/3a^2-4/3a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(4^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((16)\) = \((1/3a^3-2/3a^2-4/3a+1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -65536 \) = \(-4^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -141475015320 a^{3} + 65462998280 a^{2} + 1090960239300 a + 828263760716 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{3} a^{3} + \frac{7}{6} a^{2} + \frac{1}{3} a - \frac{13}{2} : \frac{11}{12} a^{3} + \frac{1}{6} a^{2} - \frac{31}{6} a - \frac{15}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 86.093218208223549861582124852107684993 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 0.730548558838432 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/3a^3-2/3a^2-4/3a+1)\) \(4\) \(1\) \(IV^{*}\) Additive \(1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 16.1-d consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.