Properties

Label 4.4.13888.1-16.1-a3
Base field 4.4.13888.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.13888.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 7 x^{2} + 6 x + 9 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([9, 6, -7, -2, 1]))
 
gp: K = nfinit(Polrev([9, 6, -7, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, 6, -7, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{3}a^{3}-\frac{2}{3}a^{2}-\frac{4}{3}a+1\right){x}{y}+\left(\frac{1}{3}a^{3}-\frac{2}{3}a^{2}-\frac{4}{3}a+1\right){y}={x}^{3}+\left(-\frac{1}{3}a^{3}+\frac{5}{3}a^{2}+\frac{4}{3}a-6\right){x}^{2}+\left(-\frac{79}{3}a^{3}+\frac{230}{3}a^{2}+\frac{346}{3}a-264\right){x}+218a^{3}-633a^{2}-954a+2170\)
sage: E = EllipticCurve([K([1,-4/3,-2/3,1/3]),K([-6,4/3,5/3,-1/3]),K([1,-4/3,-2/3,1/3]),K([-264,346/3,230/3,-79/3]),K([2170,-954,-633,218])])
 
gp: E = ellinit([Polrev([1,-4/3,-2/3,1/3]),Polrev([-6,4/3,5/3,-1/3]),Polrev([1,-4/3,-2/3,1/3]),Polrev([-264,346/3,230/3,-79/3]),Polrev([2170,-954,-633,218])], K);
 
magma: E := EllipticCurve([K![1,-4/3,-2/3,1/3],K![-6,4/3,5/3,-1/3],K![1,-4/3,-2/3,1/3],K![-264,346/3,230/3,-79/3],K![2170,-954,-633,218]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((1/3a^3-2/3a^2-4/3a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(4^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((16)\) = \((1/3a^3-2/3a^2-4/3a+1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -65536 \) = \(-4^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -141475015320 a^{3} + 65462998280 a^{2} + 1090960239300 a + 828263760716 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{3} - 3 a^{2} - 4 a + \frac{19}{2} : -\frac{3}{4} a^{3} + 2 a^{2} + \frac{7}{2} a - \frac{27}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 261.32363415891750112731123451655610112 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 2.21747552592921 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/3a^3-2/3a^2-4/3a+1)\) \(4\) \(1\) \(IV^{*}\) Additive \(1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 16.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.