Properties

Label 4.4.13068.1-12.1-e2
Base field 4.4.13068.1
Conductor norm \( 12 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.13068.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 6 x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{3}+2a^{2}+4a-2\right){x}{y}={x}^{3}+\left(2a^{3}-3a^{2}-11a+1\right){x}^{2}+\left(5a^{3}-19a^{2}-39a+10\right){x}+31a^{3}+32a^{2}-28a+3\)
sage: E = EllipticCurve([K([-2,4,2,-1]),K([1,-11,-3,2]),K([0,0,0,0]),K([10,-39,-19,5]),K([3,-28,32,31])])
 
gp: E = ellinit([Polrev([-2,4,2,-1]),Polrev([1,-11,-3,2]),Polrev([0,0,0,0]),Polrev([10,-39,-19,5]),Polrev([3,-28,32,31])], K);
 
magma: E := EllipticCurve([K![-2,4,2,-1],K![1,-11,-3,2],K![0,0,0,0],K![10,-39,-19,5],K![3,-28,32,31]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-5a-4)\) = \((2a^3-3a^2-10a+2)\cdot(a^2+a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 12 \) = \(3\cdot4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((15a^3-15a^2-105a-72)\) = \((2a^3-3a^2-10a+2)^{4}\cdot(a^2+a-1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 5308416 \) = \(3^{4}\cdot4^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{75343375421525}{48} a^{3} + \frac{3404376659285269}{768} a^{2} + \frac{42633632439585}{32} a - \frac{660888366058603}{768} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{7}{4} a^{3} + \frac{3}{4} a^{2} + \frac{37}{4} a + 1 : -2 a^{3} + \frac{29}{8} a^{2} + \frac{75}{8} a - \frac{19}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 34.886482294664862250896464151180037673 \)
Tamagawa product: \( 32 \)  =  \(2^{2}\cdot2^{3}\)
Torsion order: \(2\)
Leading coefficient: \( 2.44142059926107 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^3-3a^2-10a+2)\) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((a^2+a-1)\) \(4\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 12.1-e consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.