Properties

Label 4.4.12725.1-11.3-d1
Base field 4.4.12725.1
Conductor norm \( 11 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.12725.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 10 x^{2} + 11 x + 29 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([29, 11, -10, -2, 1]))
 
gp: K = nfinit(Polrev([29, 11, -10, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![29, 11, -10, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-5\right){x}{y}+\left(a^{2}-a-5\right){y}={x}^{3}+\left(a^{3}-8a-6\right){x}^{2}+\left(-3a^{3}-3a^{2}+24a+36\right){x}+a^{3}-10a-12\)
sage: E = EllipticCurve([K([-5,-1,1,0]),K([-6,-8,0,1]),K([-5,-1,1,0]),K([36,24,-3,-3]),K([-12,-10,0,1])])
 
gp: E = ellinit([Polrev([-5,-1,1,0]),Polrev([-6,-8,0,1]),Polrev([-5,-1,1,0]),Polrev([36,24,-3,-3]),Polrev([-12,-10,0,1])], K);
 
magma: E := EllipticCurve([K![-5,-1,1,0],K![-6,-8,0,1],K![-5,-1,1,0],K![36,24,-3,-3],K![-12,-10,0,1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-2a-4)\) = \((a^2-2a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 11 \) = \(11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^2-12a-36)\) = \((a^2-2a-4)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1771561 \) = \(11^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{24388973560}{1771561} a^{3} - \frac{17420952534}{1771561} a^{2} + \frac{202430910278}{1771561} a + \frac{275090744229}{1771561} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{3}{121} a^{3} + \frac{97}{121} a^{2} + \frac{32}{121} a - \frac{439}{121} : \frac{62}{1331} a^{3} - \frac{109}{1331} a^{2} + \frac{105}{1331} a + \frac{643}{1331} : 1\right)$
Height \(0.84876069482007184374641674344274040296\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a + 2 : a + 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.84876069482007184374641674344274040296 \)
Period: \( 142.58731998596709580305780908003578812 \)
Tamagawa product: \( 6 \)
Torsion order: \(3\)
Leading coefficient: \( 2.86092190317445 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-2a-4)\) \(11\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 11.3-d consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.