Properties

Label 4.4.12400.1-9.1-b1
Base field 4.4.12400.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.12400.1

Generator \(a\), with minimal polynomial \( x^{4} - 12 x^{2} + 31 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([31, 0, -12, 0, 1]))
 
gp: K = nfinit(Polrev([31, 0, -12, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![31, 0, -12, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}+\left(-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+\frac{9}{2}a+\frac{5}{2}\right){x}^{2}+\left(-8a^{3}+7a^{2}+64a-78\right){x}+\frac{79}{2}a^{3}-72a^{2}-\frac{631}{2}a+604\)
sage: E = EllipticCurve([K([0,1,0,0]),K([5/2,9/2,-1/2,-1/2]),K([0,0,0,0]),K([-78,64,7,-8]),K([604,-631/2,-72,79/2])])
 
gp: E = ellinit([Polrev([0,1,0,0]),Polrev([5/2,9/2,-1/2,-1/2]),Polrev([0,0,0,0]),Polrev([-78,64,7,-8]),Polrev([604,-631/2,-72,79/2])], K);
 
magma: E := EllipticCurve([K![0,1,0,0],K![5/2,9/2,-1/2,-1/2],K![0,0,0,0],K![-78,64,7,-8],K![604,-631/2,-72,79/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/2a^2+a-1/2)\) = \((1/2a^2+a-1/2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1/2a^3+2a^2-3/2a-19)\) = \((1/2a^2+a-1/2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 6561 \) = \(9^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{8025637785355}{81} a^{3} + \frac{46061580093845}{162} a^{2} - \frac{30209462949730}{81} a - \frac{57788918959565}{54} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{3} - \frac{1}{2} a^{2} - 7 a + \frac{11}{2} : \frac{1}{2} a^{3} - \frac{9}{2} a^{2} - \frac{13}{2} a + \frac{57}{2} : 1\right)$
Height \(0.15320017629013892723823349302744101440\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{9}{2} a + \frac{3}{2} : -\frac{1}{8} a^{3} - \frac{3}{4} a^{2} - \frac{3}{4} a + \frac{31}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.15320017629013892723823349302744101440 \)
Period: \( 525.22095584861521324481889691911430445 \)
Tamagawa product: \( 4 \)
Torsion order: \(2\)
Leading coefficient: \( 2.89035015793608 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^2+a-1/2)\) \(9\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.