Properties

Label 4.4.12400.1-9.1-a4
Base field 4.4.12400.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.12400.1

Generator \(a\), with minimal polynomial \( x^{4} - 12 x^{2} + 31 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([31, 0, -12, 0, 1]))
 
gp: K = nfinit(Polrev([31, 0, -12, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![31, 0, -12, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{2}+a-\frac{7}{2}\right){x}{y}+\left(\frac{1}{2}a^{3}-\frac{5}{2}a+1\right){y}={x}^{3}+\left(-\frac{1}{2}a^{3}+\frac{9}{2}a\right){x}^{2}+\left(-\frac{1}{2}a^{3}-\frac{7}{2}a^{2}+\frac{9}{2}a+\frac{47}{2}\right){x}+\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-\frac{9}{2}a-\frac{17}{2}\)
sage: E = EllipticCurve([K([-7/2,1,1/2,0]),K([0,9/2,0,-1/2]),K([1,-5/2,0,1/2]),K([47/2,9/2,-7/2,-1/2]),K([-17/2,-9/2,1/2,1/2])])
 
gp: E = ellinit([Polrev([-7/2,1,1/2,0]),Polrev([0,9/2,0,-1/2]),Polrev([1,-5/2,0,1/2]),Polrev([47/2,9/2,-7/2,-1/2]),Polrev([-17/2,-9/2,1/2,1/2])], K);
 
magma: E := EllipticCurve([K![-7/2,1,1/2,0],K![0,9/2,0,-1/2],K![1,-5/2,0,1/2],K![47/2,9/2,-7/2,-1/2],K![-17/2,-9/2,1/2,1/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/2a^2+a-1/2)\) = \((1/2a^2+a-1/2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((7/2a^3+5/2a^2-37/2a+39/2)\) = \((1/2a^2+a-1/2)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 531441 \) = \(9^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{51065}{243} a^{3} + \frac{776305}{1458} a^{2} - \frac{876295}{729} a - \frac{1624405}{1458} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{2} a^{2} + \frac{5}{2} : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 365.88241730810141448542925824827699348 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.64286055167270 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^2+a-1/2)\) \(9\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.