Properties

Label 4.4.12400.1-5.2-b1
Base field 4.4.12400.1
Conductor norm \( 5 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.12400.1

Generator \(a\), with minimal polynomial \( x^{4} - 12 x^{2} + 31 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([31, 0, -12, 0, 1]))
 
gp: K = nfinit(Polrev([31, 0, -12, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![31, 0, -12, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-\frac{5}{2}a-\frac{5}{2}\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+3{x}-\frac{1}{2}a^{3}-2a^{2}+\frac{3}{2}a+7\)
sage: E = EllipticCurve([K([1,0,0,0]),K([-1,-1,0,0]),K([-5/2,-5/2,1/2,1/2]),K([3,0,0,0]),K([7,3/2,-2,-1/2])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([-1,-1,0,0]),Polrev([-5/2,-5/2,1/2,1/2]),Polrev([3,0,0,0]),Polrev([7,3/2,-2,-1/2])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![-1,-1,0,0],K![-5/2,-5/2,1/2,1/2],K![3,0,0,0],K![7,3/2,-2,-1/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-1/2a^3-3/2a^2+3/2a+11/2)\) = \((-1/2a^3-3/2a^2+3/2a+11/2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5 \) = \(5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1/2a^3-5a^2-27/2a+24)\) = \((-1/2a^3-3/2a^2+3/2a+11/2)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1953125 \) = \(-5^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{102109}{6250} a^{3} - \frac{1063917}{3125} a^{2} + \frac{972919}{6250} a + \frac{8947842}{3125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{1}{2} a^{2} - \frac{3}{2} : -\frac{3}{2} a^{2} + \frac{13}{2} : 1\right)$
Height \(0.036476401579014739116427926804177207823\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.036476401579014739116427926804177207823 \)
Period: \( 185.18644608100145421800016071188693286 \)
Tamagawa product: \( 9 \)
Torsion order: \(1\)
Leading coefficient: \( 2.18379990985357 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/2a^3-3/2a^2+3/2a+11/2)\) \(5\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 5.2-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.