Properties

Label 4.4.12400.1-19.1-a2
Base field 4.4.12400.1
Conductor norm \( 19 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.12400.1

Generator \(a\), with minimal polynomial \( x^{4} - 12 x^{2} + 31 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([31, 0, -12, 0, 1]))
 
gp: K = nfinit(Polrev([31, 0, -12, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![31, 0, -12, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(\frac{1}{2}a^{3}-\frac{7}{2}a+1\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}-\frac{9}{2}a-1\right){x}^{2}+\left(32a^{3}-96a^{2}-114a+357\right){x}+642a^{3}-1842a^{2}-2417a+6931\)
sage: E = EllipticCurve([K([1,1,0,0]),K([-1,-9/2,0,1/2]),K([1,-7/2,0,1/2]),K([357,-114,-96,32]),K([6931,-2417,-1842,642])])
 
gp: E = ellinit([Polrev([1,1,0,0]),Polrev([-1,-9/2,0,1/2]),Polrev([1,-7/2,0,1/2]),Polrev([357,-114,-96,32]),Polrev([6931,-2417,-1842,642])], K);
 
magma: E := EllipticCurve([K![1,1,0,0],K![-1,-9/2,0,1/2],K![1,-7/2,0,1/2],K![357,-114,-96,32],K![6931,-2417,-1842,642]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/2a^3-7/2a-1)\) = \((1/2a^3-7/2a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 19 \) = \(19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((23a^3-145/2a^2-124a+795/2)\) = \((1/2a^3-7/2a-1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 47045881 \) = \(19^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{20257762240}{47045881} a^{3} - \frac{110308292960}{47045881} a^{2} + \frac{75361538240}{47045881} a + \frac{599800342560}{47045881} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{153}{2} a^{3} + 219 a^{2} + \frac{577}{2} a - 824 : \frac{6619}{2} a^{3} - \frac{18995}{2} a^{2} - \frac{24915}{2} a + \frac{71497}{2} : 1\right)$
Height \(0.094017941532426952609652346012757988219\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{3}{2} a^{3} + \frac{15}{4} a^{2} + 6 a - \frac{53}{4} : -\frac{11}{8} a^{3} + \frac{33}{8} a^{2} + \frac{43}{8} a - \frac{137}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.094017941532426952609652346012757988219 \)
Period: \( 453.85755379731274289934979975150364769 \)
Tamagawa product: \( 6 \)
Torsion order: \(2\)
Leading coefficient: \( 2.29916804176374 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3-7/2a-1)\) \(19\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 19.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.