Properties

Label 4.4.12400.1-19.1-a1
Base field 4.4.12400.1
Conductor norm \( 19 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.12400.1

Generator \(a\), with minimal polynomial \( x^{4} - 12 x^{2} + 31 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([31, 0, -12, 0, 1]))
 
gp: K = nfinit(Polrev([31, 0, -12, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![31, 0, -12, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-\frac{5}{2}a-\frac{5}{2}\right){x}{y}+\left(\frac{1}{2}a^{3}-\frac{5}{2}a+1\right){y}={x}^{3}+\left(-\frac{1}{2}a^{3}+\frac{1}{2}a^{2}+\frac{7}{2}a-\frac{5}{2}\right){x}^{2}+\left(-\frac{1}{2}a^{2}-a+\frac{9}{2}\right){x}+\frac{1}{2}a^{2}-\frac{11}{2}\)
sage: E = EllipticCurve([K([-5/2,-5/2,1/2,1/2]),K([-5/2,7/2,1/2,-1/2]),K([1,-5/2,0,1/2]),K([9/2,-1,-1/2,0]),K([-11/2,0,1/2,0])])
 
gp: E = ellinit([Polrev([-5/2,-5/2,1/2,1/2]),Polrev([-5/2,7/2,1/2,-1/2]),Polrev([1,-5/2,0,1/2]),Polrev([9/2,-1,-1/2,0]),Polrev([-11/2,0,1/2,0])], K);
 
magma: E := EllipticCurve([K![-5/2,-5/2,1/2,1/2],K![-5/2,7/2,1/2,-1/2],K![1,-5/2,0,1/2],K![9/2,-1,-1/2,0],K![-11/2,0,1/2,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/2a^3-7/2a-1)\) = \((1/2a^3-7/2a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 19 \) = \(19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^3+9/2a^2-12a-41/2)\) = \((1/2a^3-7/2a-1)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -6859 \) = \(-19^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{43567442560}{6859} a^{3} + \frac{129020350240}{6859} a^{2} - \frac{163951874560}{6859} a - \frac{485555172640}{6859} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{1}{2} a^{3} - 2 a^{2} + \frac{7}{2} a + 12 : -\frac{3}{2} a^{3} - \frac{5}{2} a^{2} + \frac{29}{2} a + \frac{49}{2} : 1\right)$
Height \(0.18803588306485390521930469202551597644\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{7}{4} a + \frac{1}{4} : \frac{1}{8} a^{3} + \frac{1}{8} a^{2} - \frac{5}{8} a - \frac{17}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.18803588306485390521930469202551597644 \)
Period: \( 453.85755379731274289934979975150364768 \)
Tamagawa product: \( 3 \)
Torsion order: \(2\)
Leading coefficient: \( 2.29916804176374 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3-7/2a-1)\) \(19\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 19.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.