Properties

Label 4.4.11661.1-27.1-e2
Base field 4.4.11661.1
Conductor norm \( 27 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.11661.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 4 x^{2} + 5 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([3, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-4a+2\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(a^{3}-6a-3\right){x}^{2}+\left(-9a^{3}+18a^{2}+30a-42\right){x}+19a^{3}-44a^{2}-57a+107\)
sage: E = EllipticCurve([K([2,-4,-1,1]),K([-3,-6,0,1]),K([-2,-1,1,0]),K([-42,30,18,-9]),K([107,-57,-44,19])])
 
gp: E = ellinit([Polrev([2,-4,-1,1]),Polrev([-3,-6,0,1]),Polrev([-2,-1,1,0]),Polrev([-42,30,18,-9]),Polrev([107,-57,-44,19])], K);
 
magma: E := EllipticCurve([K![2,-4,-1,1],K![-3,-6,0,1],K![-2,-1,1,0],K![-42,30,18,-9],K![107,-57,-44,19]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-5a)\) = \((-a)\cdot(a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3\cdot3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-26a^3-25a^2+100a-57)\) = \((-a)^{15}\cdot(a+1)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 387420489 \) = \(3^{15}\cdot3^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{16988069332}{14348907} a^{3} + \frac{37528265996}{14348907} a^{2} + \frac{65539602622}{14348907} a - \frac{123694858235}{14348907} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-2 a^{3} + 11 a + 7 : 5 a^{3} - 4 a^{2} - 22 a - 6 : 1\right)$
Height \(0.0071234152925676879924946239132997808055\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0071234152925676879924946239132997808055 \)
Period: \( 408.46516301754559657854036357247184625 \)
Tamagawa product: \( 30 \)  =  \(( 3 \cdot 5 )\cdot2\)
Torsion order: \(1\)
Leading coefficient: \( 3.23337916276245 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(3\) \(15\) \(I_{15}\) Split multiplicative \(-1\) \(1\) \(15\) \(15\)
\((a+1)\) \(3\) \(2\) \(III\) Additive \(1\) \(2\) \(3\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 27.1-e consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.